Partitioning between cytochrome c oxidase and alternative oxidase studied by oxygen kinetics of dark respiration in *Chlamydomonas reinhardtii*: a microalgae model organism

Marco Di Marcello¹, Iglesias-Gonzalez J¹, Meszaros A¹,², Haider M³, Gnaiger E¹,², Huete-Ortega M¹

¹Oroboros Instruments, Innsbruck, Austria; ²D Swarovski Research Lab, Dept Visceral, Transplant Thoracic Surgery, Med Univ Innsbruck, Austria; ³SHTech, Innsbruck, Austria

marco.dimarcello@oroboros.at

http://www.mitofit.org/index.php/Di_Marcello_2019_MitoFit_Preprint_Arch

© 2019 Di Marcello et al. This is an Open Access extended abstract (not peer-reviewed) distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. © remains with the authors, who have granted MitoFit an Open Access preprint license in perpetuity.

Editor MitoFit Preprint Archives: Gnaiger E

Introduction

Bioenergetics is the study of how living organisms acquire and transform energy to perform biological work. Energetic coupling between chloroplasts and mitochondria has been described in algae, demonstrating that a good functionality and interaction between both organelles is necessary to maintain metabolic integrity. High-resolution respirometry (HRR) is widely used to assess mitochondrial respiration and other bioenergetics parameters in the biomedical field of mitochondrial research and its clinical applications [1]. In our interdisciplinary study, we adapted the multimodal approach of the Oroboros O2k high-resolution respirometer to investigate algal bioenergetics for biotechnological purposes [2].

In contrast to mammalian cells, algal mitochondria possess alternative oxidases (AOX), which bypass electron transfer from the Q-junction through Complexes CIII and CIV [3]. Therefore, in algae we can distinguish between respiration through the Q-AOX and Q-CIV branches.

Material and methods

The microalgal model organism *Chlamydomonas reinhardtii* wild-type strain wt12 was grown at RT in Tris-Acetate-Phosphate (TAP) medium in a 16:8 h light:dark cycle. Oxygen flux, \(J_{O_2} \), was monitored in wt12 living cells in the exponential growth phase at 25 °C in Oroboros O2k high-resolution respirometers excluding any light in the chambers. Substrate-uncoupler-inhibitor titration (SUIT) protocols were specifically developed to characterise activities of the Q-AOX and Q-CIV branch (SUIT-022 [4] and SUIT-023 O2 [5], respectively). To quantify the contribution of the Q-AOX branch to algal dark respiration, we studied the oxygen kinetics of (1) ROUTINE-respiration in TAP medium, (2) Q-AOX dependent respiration after inhibition of CIV with 1 mM potassium cyanide (KCN), and (3) Q-CIV dependent respiration after inhibition of AOX with 1 mM salicylhydroxamic acid (SHAM). Oxygen kinetics was obtained from aerobic-anoxic...
transitions with high time resolution at a data sampling interval of 0.2 s. \(p_{50} \) is the O\(_2\) partial pressure, \(p_{O2} \), at 50% of maximal respiration, \(J_{\text{max}} \) [6]. The \(p_{50} \) was calculated from hyperbolic fits using the Oroboros O2Kinetics software for automatic O\(_2\) calibration, correction for zero O\(_2\) signal drift, instrumental background O\(_2\) flux and exponential time constant of the polarographic oxygen sensor [7]. A single shifted hyperbolic fit was used to fit \(J_{O2} \) as a function of \(p_{O2} \) in each aerobic-anoxic transition.

Results and conclusions

\(p_{50} \) ranged from 0.06 to 0.08 kPa for ROUTINE-respiration with an excellent fit by a first-order hyperbolic function. This oxygen affinity is comparable to that in small mammalian cells [8]. Upon inhibition of CIV with KCN, \(J_{O2} \) was significantly impaired (Fig. 1A) and \(p_{50} \) increased three-fold up to 0.35 kPa (Fig. 2). No decline of \(J_{O2} \) and \(p_{50} \) was observed relative to ROUTINE-respiration after inhibition of AOX with SHAM (Fig. 1B). In all cases, excellent fits of respiration as a function of oxygen pressure were obtained by a first-order hyperbolic function.

![Figure 1](image-url) **Figure 1. High-resolution respirometry for the study of dark respiration and O\(_2\) kinetics with C. reinhardtii wt12.** Representative O2k traces showing O\(_2\) concentration and O\(_2\) flux per chamber volume with repeated aerobic-anoxic transitions (O\(_2\) kinetics) and re-oxygenations. **A:** Protocol SUIT-022: AOX-ce CN+SHAM. **B:** Protocol SUIT-023: AOX-ce SHAM+CN. Note the high technical reproducibility of ROUTINE-respiration in both protocols, and the identical and relatively high residual oxygen consumption, Rox, after titration of both inhibitors in both protocols.
Figure 2. p_{50} in living cells of *C. reinhardtii* in the ROUTINE-state of respiration, and metabolic pathways restricted to the Q-AOX or Q-CIV branch. O$_2$ kinetic experiments were run in presence of the cytochrome c oxidase inhibitor potassium cyanide (AOX group) or the alternative oxidase inhibitor salicylhydroxamic acid (CIV group). The data represents $n=8$ technical replicates, $N=2$, median ± IR.

If the potential contribution of the Q-AOX branch in the ROUTINE-state would be compensated for by increased Q-CIV flux after addition of SHAM, then the mixed Q-AOX and Q-CIV fluxes would give rise to biphasic hyperbolic oxygen kinetics, with a contribution of the high-affinity Q-CIV branch and the low-affinity Q-AOX branch. Taken together, our results provide evidence against a contribution of AOX to ROUTINE-dark respiration in wt12 cells under the presently applied culture conditions. Oxygen kinetics provides a sensitive and fast method for detection of Q-AOX and Q-CIV contributions to dark respiration in living cells. This kinetic approach is based on the difference of O$_2$ affinities of the two pathway branches, which will extend our understanding of the bioenergetics and physiology of all types of cells harbouring AOX and CIV.

Supported by project NextGen-O2k, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 859770

References

4. www.bioblast.at/index.php/SUIT-022_O2_ce_D051
5. www.bioblast.at/index.php/SUIT-023_O2_ce_D053