

OROBOROS INSTRUMENTS

RESEARCH ARTICLE | *Molecular Pathways in Cell Signaling*

Regulation of ATP production: dependence on calcium concentration and respiratory state

Brian D. Fink,¹ Fan Bai,¹ Liping Yu,^{2,3} and William I. Sivitz¹

High-resolution respirometry of mouse skeletal muscle

Figure 1.

A. High-resolution respirometry in mouse muscle isolated mitochondria, 5 mM glutamate, 1 mM malate. Mean \pm SE; N = 8 (each data point), N = 5 for 50,000 nM Ca²⁺. **B.** Membrane potential measured in parallel with a TPP⁺ electrode. C. O_2 flux and membrane potential measured with TPP⁺ electrode different in concentrations of Ca2+, 5 mM glutamate, 1 mM malate, 20 µM ADP with a 2-deoxyglucose-hexokinase clamp. **D.** ATP production was measured from samples acquired from the O2k chambers (2deoxyglucose phosphate detected by NMR).

Ca²⁺ effect over membrane potential and ATP production

Figure 2.

A. Membrane potential measured with the O2k/TPP⁺ electrode in different concentrations of glutamate and malate to reach different $\Delta\Psi$ values, with 0, 450 and 10,000 nM free Ca²⁺. ATP production was measured from samples acquired from the O2k chambers. **B.** Slope of ATP vs. $\Delta\Psi$, mean ± SE; n = 11 (Ca²⁺ 0 and 450 nM), n = 5 (10,000 nM Ca²⁺), one-way ANOVA.

Free Ca²⁺ induced changes on mitochondrial respiration and ATP production irrespective to the changes in membrane potential and without promoting the opening of the mPTP (no decrease in $\Delta\Psi$)

Reference: Fink BD, Bai F, Yu L, Sivitz WI (2017) Regulation of ATP production: dependence on calcium concentration and respiratory state. Am J Physiol Cell Physiol 313(2): C146-C153.

Text slightly modified based on the recommendations of the COST Action MitoEAGLE CA15203. Doi:10.26124/mitofit:190001.v4