Name	Session	Title
Address		
	1	
Benard G.	1-1	Mitochondrial Turnover as a Function of its Energy State.
		A possible role for Rheb in mitochondrial degradation.
Karbowski M.	1-2	Role of ubiquitin/proteasome system and AAA-ATPase,
		p97 in regulation of mitochondrial homeostasis.
Quinn S.	1-3	Perturbation of Mitochondrial Fusion Rates by OXPHOS inhibitors in
		HeLa Cells Subsisting on Galactose/Glutamine.
Camougrand N.	1-4	Mitophagy in yeast: actors and signalisation.
Koopman W.	1-5	Solute diffusion is hindered in the mitochondrial matrix.
Agriesti F.	1-6	Mitochondriogenesis and ROS signaling in
		hematopoietic stem cells differentiation.
Engstova H.	1-7	Remodeling of the mitochondrial network under hypoxic adaptation.
Reynier P.	1-8	Clinical phenotypes and pathophysiology of OPA1-related disorders.
Rojo M.	1-9	Pathogenic mutations of the mitochondrial ATP6 gene provoke
		dominant inhibition of mitochondrial inner membrane fusion.
Lu B.	1-10	Mitochondrial morphogenesis, distributionand parkinson disease: insight from PINK1.
Schlattner U.	1-11	Mitochondrial creatine kinase and nucleoside diphosphate kinase
		interact differently with mitochondrial cardiolipin-rich membranes.
Manon S.	1-12	Regulation of Bax adressing and conformational changes by Tom22.
Melser S.	P 1-2	Mitochondrial Turnover as a Function of its Energy State.
		A possible role for Rheb in mitochondrial degradation.
Jezek P.	P 1-3	Redistribution of mtDNA nucleoids within mitoreticulum upon simulated
		pathological conditions as revealed by 3D 4Pi and BiplaneFPALM microscopy.
Rosca M.	P 1-4	Distinct cellular cAMP compartments have different effects on
		mitochondrial function and cristae morphology.
van Beek J.	P 1-5	Fast dynamic response of mitochondria to ADP and inorganic
		phosphate predicted by computational modelling.
Ransac S.	P 1-6	A Stochastic Approach of the Electron Transport in the
		Mitochondrial Respiratory Chain Complexes.
Zelenka J.	P 1-7	Import of Recombinant RNA into Mitochondria of Living Cells.
Pouvreau S.	P 1-8	Regulation of intracellular calcium signaling by mitochondria in skeletal muscle.
Lacombe M.	P 1-9	Cardiolipin transfer between mitochondrial membranes in vivo:
		a role for nucleoside diphosphate kinase D.
Büttner S.	P 1-10	The role of WAH-1/AIF as a new regulator of ageing in C. elegans.
Hejzlarova K.	P 1-11	TMEM70 protein: Expression and processing of a novel ancillary factor for ATP synthase. biogenesis.
Karachitos A.	P 1-12	Minocycline effect on mitochondria is linked to VDAC:
		studies using Saccharomyces cerevisiae mitochondria.
Habersetzer J.	P 1-13	Mitochondrial dynamic and supramolecular assembly of ATP synthase in
		HeLa cells: contribution of 2 accessory subunits (e and g) from ATP synthase.
Fasching M.	P 1-14	Combination of high-resolution respirometry and fluorimetry for continuous monitoring
		of hydrogen peroxide production by mitochondria with resolution in the nanomolar range.
Springett R.	P 1-15	Advanced Technologies for Studying Mitochondrial Function.
Paumard P.	P 1-16	

Brèthes D.	P 1-17	
Duvezin-Caubet S.	P 1-18	
Gonzalez C.	P 1-20	
Lauquin G.	P 1-21	
Lasserre J.P.	P 1-22	
O'Brien N.	P 1-23	Cytotoxic and apoptotic effects of the oxidized derivatives of stigmasterol
		in the U937 human monocytic cell line.
	2	
Pinkert C.	2-1	Mouse Modeling of Human Mitochondrial Disease Pathogenesis.
Bourdineaud J.P.	2-2	Zebrafish: a model animal for analyzing the impact of environmental
		pollutants on muscle and brain mitochondrial bioenergetics.
Bulteau A.	2-3	Importance of the mitochondrial Lon protease in aging and Parkinson disease.
Eckert G.	2-4	Curcumin protects brain cells from age related mitochondrial dysfunction in vivo.
Brown Guy C.	2-5	Potential roles of mitochondrial Complex I in inflammatory neurodegeneration.
El-Bacha T.	2-6	Mitochondrial bioenergetic alterations in mouse neuroblastoma cells
Borutaite V.	2-7	infected with Sindbis Virus: Implications to viral replication and neuronal death. Mitochondria and beta amyloid oligomer-induced neuronal death.
Kovarova N.	2-8	Respiratory chain compensatory changes and COX assembly alteration in fibroblast cell lines from nine patients with SURF1 gene mutations.
Corti O.	2-9	Protein-protein interactions at the outer mitochondrial membrane shedlight
CO. C. O.		on a new putative role of the parkinson's disease related protein PARKIN in mitochondrial physiology.
Marsicano G.	2-10	Mitochondrial CB1 receptros link neuronal energy metabolism and synaptic plasticity.
Wieckowski M. R.	2-11	New Role of Uncoupling Proteins in Mouse Brain.
Gellerich F.	2-12	Cytosolic Ca2+ controls via the metabolic pyruvate supply unit the energization of brain mitochondria.
Gouarné C.	P 2-1	Primary cortical and striatal neurons capacity to use other substrates than
		glucose for aerobic glycolysis.
Karlsson M.	P 2-3	Evaluating brain mitochondrial function in a murine model of cerebral malaria.
Suski J.	P 2-5	Protective role of uncoupling proteins against oxidative
Eckmann J.	P 2-6	stress-dependent damages in mouse brain. Olesoxime inhibits Ca2+-induced permeability transition in isolated brain
LCKIIIaIIII 3.		mitochondria by modulating mitochondrial membrane fluidity.
Hagl S.	P 2-7	y-Oryzanol and Tocotrienol enriched Rice Bran Extract improves
-		mitochondrial function ex vivo.
Gellerich F.	P 2-8	Cytosolic Ca2+ controls via the metabolic pyruvate supply unit the
Elman E	P 2-9	energization of brain mitochondria.
Elmer E.		Analysis of systemic bioenergetic capacity in neurodegeneration.
Eckert S.	P 2-10	Dimebon improves mitochondrial dysfunction in a cellular model of Alzheimer's disease.
	3	
Rigoulet M.	3-1	
Devin A.	3-2	Redox control of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae.
Szibor M.	3-3	NOA1 controls mitochondrial enzyme activities in a
Hay Magans M	2.4	complex IV and oxygen dependent manner.
Hey-Mogensen M.	3-4	Evaluating biomarkers for mitochondrial content in human skeletal muscle.

3-5	Reduction of triacylglycerol content in 3T3-L1 adipocytes exposed to a
	mitochondrial uncoupling: a potential role for macroautophagy and pyruvate carboxylase.
3-6	ECTO-F-ATPASE: A moonlighting protein comples and an unexpected APOA-I receptor.
3-7	New methods for evaluating muscle mitochondrial function in translational studies.
3-8	Metabolic adaptation to high altitude hypoxia in human skeletal muscle.
3-9	Recombinant erythropoietin treatment enhances state 3
	mitochondrial respiration in human skeletal muscle.
3-10	Mechanisms of Mitochondrial Dysfunction with Age in Humans of
	Various Functional Statuses.
3-11	Administration of 3,4-methylenedioxymethamphetamine (MDMA aka ecstasy) to mice
	activates uncoupling protein 3 (UCP3) and results in increased proton leak in skeletal muscle mitochondria.
3-12	Enhanced systemic oxidative stress is associated with impaired fatty acid metabolism
	in skeletal muscle in patients with metabolic syndrome.
	Virtual Mitochondrion.
P 3-1	Control of oxidative phosphorylation by the adenine nucleotide translocase 2
	in human skeletal muscle mitochondria.
P 3-2	The influence of age and aerobic fitness: Effects on mitochondrial respiration
	in skeletal muscle.
P 3-3	High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux
D 2 4	in skeletal muscle.
P 3-4	Is there a systemic mitochondrial biogenic response to aerobic training?
חסר	Mitochondrial respiration in platelets from athletes forced to rest following a knee injury. Recombinant erythropoietin treatment increases mitochondrial
P 3-5	
D 2 6	fat oxidation in human skeletal muscle. Functional evaluation of oxidative metabolism in hypertrophic skeletal muscle:
F 3-0	an integrative approach.
P 3-7	Endocrine controls of mitochondrial metabolism through NO signaling.
	Growth yield and mitochondrial bioenergetics in Candida utilis.
	Crown yield and micochondrial blockergedes in candida delis.
4-1	The Mitochondrial Disease Biobank: an International Resource for the
4.2	Advancement of Mitochondrial Medical Research and Medicine.
4-2	A yeast-based assay identifies drugs active against
4.2	human mitochondrial disorders. The involvement of metallothioneins in mitochondrial function and disease.
4-4	Evaluation of drug toxicity in isolated mouse liver mitochondria as a predictive model of
4.5	hepatotoxicity risks in human.
4-5	Fatty acids as regulators of mitochondrial uncoupling protein 1:
1-6	structural requirements and coactivator demands. Lipoic acid increases hepatic mitochondrial defenses through Foxo3a deacetylation
4-0	by SIRT3 in a diet-induced obesity rat model.
4-7	Metformin treated patients with type 2 diabetes have normal
T /	mitochondrial complex I respiration.
4-8	The impact of mitochondria on the pathogenesis of systemic inflammatory
. •	
	response syndrome (SIRS) in an in vitro model of cultured liver cells.
4-9	response syndrome (SIRS) in an in vitro model of cultured liver cells. Coupling Control and Substrate Control of Mitochondrial Membrane Potential and
	3-6 3-7 3-8 3-9 3-10

Sanches Moura A.	4-10	Overfeeding during lactation leads to obesity and mitochondrial dysfunction in adult mice.
Conti M.	4-11	Bioquanta is a biothechnology company specialized in biology and molecular modeling.
Ashmore T.	4-12	Chronic hypoxia leads to altered electron transport chain function and
		decreased mitochondrial coupling in skeletal muscle.
Hand S.	4-13	Mitochondria in extreme states: Function and stability during
		energy limitation and desiccation in nature.
Shabalina I.	P 4-1	Impaired function of mitochondria in tissues from mice expressing
		defective mitochondrial DNA polymerase.
Belosludtsev K.	P 4-3	Sr2+-induced oscillation of ion fluxes in mitochondria is associated with accumulation of
Climda F	D 4 4	free palmitic acid induced the lipid pore formation.
Slinde E.	P 4-4	Interaction between myoglobin and mitochondria from pork liver and muscle (M.Masseter).
Trumbeckaite S.	P 4-5	Experimental severe acute pancreatitis induces mitochondrial dysfunction in rat pancreas and kidney but not in liver.
Chakraborty M.	P 4-6	Peripheral mitochondrial function during experimental acute pancreatitis.
Colleoni F.	P 4-7	Hypoxia and placental mitochondria: a critical determinant of fetal growth?
Imasawa T.	P 4-8	Mitochondria should be associated with the etiopathogenesis of
inasawa 11		low birth weight-related nephropathy.
Sferruzzi-Perri A.	P 4-9	Mitochondrial function in the mouse placenta during late pregnancy.
Kozlov A.	P 4-10	Mitochondrial response to shock stimuli in in vitro models.
Sjörvall F.	P 4-11	Leukocyte mitochondrial respiratory dynamics in patients with sepsis.
Maevskii E.	P 4-12	A succinate-based biologically active supplement, a means to
		alleviate severe symptoms of menopause.
Ehinger J.	P 4-13	Mitochondrial respiratory capacity in human platelets – in vitro ageing
		and effect of cold storage.
Stancic A.	P 4-14	Role of glutathione in mitochondrial structural remodeling in interscapular
		brown adipose tissue during cold acclimation.
Lyabakh K.	P 4-15	Computer analysis of mitochondria involvement in cell adaptation to oxygen deficit.
Zakharchenko M.V.	P 4-16	Burst of succinate- and α-ketoglutarate dehydrogenase activity related to expression of
		succinate dehydrogenase subunit a, succinate receptor and other respiratory chain proteins
D: 1 E		during the short -term physiological stress in rats.
Pierrel F.	P 4-17	Yeast coenzyme Q biosynthesis: involvement of three proteins in the C5-hydroxylation
Hashimi H.	P 4-18	reaction and rescue of this deficient biosynthetic step by substrate analogues. A putative mitochondrial calcium/proton antiporter is essential for both life stages of the
nasnimi n.	P 4-18	pathogen Trypanosoma brucei and the "petite mutant" Trypanosoma evansi.
Hiwatashi A.	P 4-19	Study on urinary biomarker of podocyte function; podocalyxin,
iliwatashi A.	1 7 19	free mtDNA and intra-podocyte mtDNA.
Szarka A.	P 4-20	Enhanced ascorbate synthesis and regeneration in complex III deficient Arabidopsis.
Marelesson S.	P 4-22	Rapid diagnosis of mitochondrial dysfunction via blood sampling -
		collection of reference data from the newborn to adulthood and its
		application to diagnosis of children with unknown encephalomyopathy.
Godard F.	P 4-24	
Sommer S.	P 4-25	
	5	
Diolez P.	5-1	System analysis of cardiac contraction energetics.

Hoppel C.	5-2	Dynamic Morphology of Isolated Cardiac Mitochondria during metabolic Transition.
Hettling H.	5-3	Functional Coupling between Adenine Nucleotide Translocator and
, <u></u>		Mitochondrial Creatine Kinase in Heart Muscle: Computational Model Analysis.
Forkink M.	5-4	Implications of artificial and physiological stimulation of mitochondrial ROS production.
Diogo C.V.	5-5	Cardiac mitochondrial dysfunction during hyperglycemia: the role of oxidative stress.
Iftikar F.	5-6	The heart warming impacts of climate change:
		A mitochondrial insight to heart failure in fish.
Pasdois P.	5-7	The role of oxidized cytochrome c in regulating mitochondrial H2O2 production
		during cardiac ischaemia / reperfusion and cardioprotection.
Korzeniewski B.	5-8	Computer-aided analysis of biochemical mechanisms that increase metabolite and
		proton stability in heart during severe hypoxia and generate post-ischemic PCr overshoot.
Bunik V.	5-9	Up-regulation of the 2-oxoglutarate dehydrogenase as a stress response: potential
		implications for pre-conditioning to hypoxia/ischemia.
Morota S.	5-10	Permeability Transition in Human Heart Mitochondria.
Avetisyan A.	5-11	Mitochondria-targeted penetrating cations as mild uncouplers.
Christiansen L.	P 5-1	Between mouse and man: Feline mitochondrial respiratory function.
Hagen C.	P 5-2	Mutations in MTCYB, coding for Mitochondrial Cytochrome b, increase penetrance of
J		Hypertrophic Cardiomyopathy.
Hansson M.	P 5-3	Mild uncoupling is not beneficial to heart mitochondrial resistance to calcium overload
		regardless if H+ or K+ conductance is increased.
Morash A.	P 5-4	Inhibition of lipid oxidation in cardiac and skeletal muscle mitochondria
		during acute and chronic hypoxia.
Busija D.	P 5-5	Mitochondrial depolarization without reactive oxygen species (ROS) production leads to
<u>-</u>		augmented cerebral vascular relaxation via calcium-related events.
Guillaud F.	P 5-6	Modeling of ROS generation by complex III: effects of quinone,
Labia dainala M	P 5-7	antimycin and membrane potential.
Lebiedzinska M.	P 5-7	Oxidative stress dependent activation of p66Shc phosphorylation pathway
Hickey A.	P 5-8	in fibroblasts of NARP patients. A radical approach to beating hypoxia: Depressed free radical release from heart fibres
THICKEY A.	' ' '	of the hypoxia-tolerant epaulette shark (Hemiscyllum ocellatum).
Duluc L.	P 5-9	Role of the mitochondria in the effect of ProvinolsTM on endothelial cells with respect to
2 4.46 2.		estrogen receptor, reactive oxygen species and nitric oxide pathway.
Kim H.K.	P 5-10	Cardiac mitochondrial proteomic responses to ischemia reperfusion injury
		and ischemic preconditioning.
Han J.	P 5-11	Tetrahydrobiopterin can rescue cardiac mitochondrial dysfunction by regulating
		mitochondrial biogenesis and oxidative phosphorylation.
Mironova G.	P 5-12	The role of mitochondrial ATP-dependent potassium channel in the mechanism of
		uridine-containing drugs action on energy exchange, lipid peroxidation and the
		myocardial antioxidant system under the conditions of acute coronary insufficiency.
Severin F.	P 5-13	Studying mild mitochondria-targeted uncouplers in yeast model.
Skemiene K.	P 5-14	Anthocyanins in protection against heart ischemia injury.
Gabrielova E.	P 5-15	2.3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation
		by reducing reactive oxygen species.
Lagranha C.J.	P 5-16	Treatment with selective serotonin re-uptake inhibitor during lactation induced
		oxidative stress and cardiovascular alterations.

Gnaiger E.	P 5-17	Increased OXPHOS Capacity after Cold Preservation of the Human Heart – a Paradox Resolved by a Dyscoupling Mechanism.
Kavutcu M.	P 5-18	The effects of carbon tetrachloride on the oxidant –antioxidant status of rat kidney tissues: effect of stobadine.
	6	
Jose C.	6-1	Metabolic flexibility confers a proliferative advantage of cancer cells in conditions of variable energy substrate delivery in a model of artificial human tumorigenesis.
Chatelain E.	6-2	Preservation of mitochondrial functions in cancer cells through membrane potential: phosphorylation of NDUFB10 by Src kinase in 143b and DU145 cells.
Cormio A.	6-3	Mitochondrial biogenesis increases in hyperplasia and type I endometrial carcinoma.
Smolková K.	6-4	Reductive carboxylation pathway and its impact on bioenergetics of the cancer cell.
Mazure N.	6-5	
Thomas K.J.	6-6	A lung cancer model linking apoptotic resistance and metastatic potential via defects in mitochondrial fission protein dynamin-related protein 1.
Song I.	6-7	The mitochondria contribute to maintenance of stemness and resistance to 5-FU In colon cancer stem cells.
Gasparre G.	6-8	Allotopic expression reverses the anti-tumorigenic potential of oncojanus MTND1.
Satyamoothy K.	6-9	
Villalba M.	6-10	Mtochondria control expression of the self-complex MHC-I: Effect on tumorigenesis.
Guerra F.	P 6-1	Mitochondrial DNA mutations in sporadic and Birt-Hogg-Dube'associated oncocytoma.
Capristo M. Italy	P 6-2	A mutation threshold triggers the anti-tumorigenic effect of oncojanus MTND1.
Nosar V.	P 6-4	Bioenergetic effects of mitoK+ATP-channel activation combined with the opening of mitochondrial permeability transition pore.
Lee S.	P 6-5	The change of mitochondrial characteristics leads different susceptibility to bortezomib in multiple myeloma.
Nouette-Gaulain K.	P 6-6	LEVOBUPIVACAINE inhibits human prostate cancer cell cycel progression by synergistic defects in glycolysis, mitochondrial metabolism and AKT survival pathway.
Charles E.	P 6-8	Antidepressants, such as Prozac, affect the mitochondrial respiratory chain. Relationship to their antitumoral effects.
Jeong S. H.	P 6-9	Modulation of apoptosis by resveratrol analogue; targeting mitochondria for cancer therapy.
Leaver H.	P 6-10	Lipid Signalling in Glioma Mitochondria: Postulated Role in Hypoxia and Regression.
Piccoli C.	P 6-13	Hepatitis C virus proteins expression causes bioenergetic unbalance and pseudo-hypoxic adaptation making cells prone to neoplastic transformation.
Elwi A.	P 6-14	The mitochondrial Hsp70 and Hsp40 chaperone network controls tumor cell mitochondrial dynamics and apoptosis.