6.1 Thermodynamic Considerations
of Invertebrate Anoxibiosis

E. Gnaiger

ECOLOGICAL AND BIOCHEMICAL BACKGROUND

In no case was it unequivocally demonstrated that any meta-
Zzoan organism is capable of performing its whole life cycle
under strictly anoxic conditions "(105)". There are, how-
ever, ecological indications of persistent, if not permanent,
anoxic animal life, especially abundant in marine sediments
containing hydrogen sulfide "(24,73,77,78,107,108,114,115)"
and to a lesser extent in anoxic strata of limnetic muds

"(3, 63, 84, 99)" and meromictic lakes "(4,90)".

Under these conditions glycogen is commonly the prime source
of energy, whereas the metabolic integration of amino acids
and lipids is still a matter of speculation and contradiction
"(14,32,35,45,135)". Pathway and control of glucose degrada-
tion are comparable to the classical Embden-Meyerhof-Parnas
route to the level of phosphoenol pyruvate (PEP) "(85,101)".
A detailed literature deals with the aerobic-anoxic control
of Coz-fixation at the PEP-branchpoint and the formation of
succinate via the reversed tricarboxylic-acid-cycle sequen-
ce (Fig.1). Most exentsively studied in parasitic helminths
"(6,7,93,123)" and intertidal bivalves "(34,37,38,46,81,
135)" the same basic frame of the anoxic pathway leading to
succlnate was also demonstrated in fresh-water bivalves
"(30)", gastropoda "(70,71,76,103,104)", polychaeta "(&89,
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121)", oligochaeta "(20,21,100,101)" and chelicerata "(23)",
Additional studies indicate the existence of these metabolic
pathways in other phyla "(32,39,41,50,67)", and support the
view of its general importance in anoxibiotic invertebrates,
and possibly in some vertebrates "(53,58,59,82)",

A principal criterion which must be fulfilled by any scheme
of anoxic energy metabolism is the maintenance of redox ba-
lance, i.e. a constant NAD/NADH ratio. In lactic fermentation
NADH, generated by the oxidation of glyceraldehyde-3-phos-—
phate, is fed into the reductive lactate dehydrogenase step.
As a peculiarity of molluscs, lactate dehydrogenase may be
partially replaced by octopine dehydrogenase "(26,28,29, 36,
87)". In animals with high anoxic capacity, however, the
cytoplasmatic malate dehydrogenase takes over the function
of lactate dehydrogenase and thereby plays an important role
in the regulation of the PEP-branchpoint "(11,19,46,64,68,
69,112,122)" - quite analogous to the glycerol phosphate
shuttle preventing aerobic formation of lactate (Pasteur ef-

fect).

Oxidation of an additional molecule of NADH proceeds conco-
mitantly with the formation of succinate (Fig.1). As a me-
chanism sustaining a constant NAD/NADH ratio in Ascaris,

Saz and his coworkers described a "malate dismutation system"
giving rise to equal amounts of succinate and pyruvate by
the combined avtivity of mitochondrial fumarate reductase
(succinate dehydrogenase) and malic enzyme, respectively
"(93,94,95,102)", but the NADH requirement along the metabo-
lic path leading to other end products is not accounted for.

In molluscs the same dismutation system would be operative
if succinate and alanine accumulate in equimolaramounts,

alanine being formed from pyruvate by transamination reac-
tions "(33,70,106)". Hochachka's group postulated that du-
ring anoxibiosis the tightly linked catabolism of carbohy-
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drate and amino acids is responsible for the maintenance of
redox equilibrium, whereby one glucose unit, two molecules
of aspartate, and two molecules of a-ketoglutarate must be
mobilized simultaneously, and end products must be formed in
constant ratios "(45)". Experimental evidence, however, sug-
gests anoxic formation of amino acids rather than amino acid
consumption "(1,2,32,70,101,106,121,132,136)", an exception
being Fasciola hepatica "(51,60)" a parasite exposed to a
high-protein diet "(86)". This, together with the fact that
anoxic end products do not accumulate at a fixed ratio (see
below), supports the scheme given by de Zwaan and his colle-
ges "(55,132,135,137)": By slow action in the forward direc-
tion the tricarboxylic acid cycle generates NADH which is
consumed by the fumarate reductase step. Therefore anoxic
carbohydrate and protein catabolism are not connected by an
obligatory link, but, rather, are related to ecological and
physiological parameters like quality of food, starvation,
and time of anoxibiosis. This sets the stage for a numerical
evaluation of anoxibiotic processes and comparison of dif-
ferent biochemical strategies of carbohydrate catabolism on
quantitative grounds.

CHANGES OF FREE ENERGY ASSOCIATED WITH CATABOLISM OF
GLUCOSE AND ANOXIC ATP GENERATION

The catalytic action of both pyruvate kinase in classical
glycolysis and phosphoenolpyruvate carboxykinase "(110)" in
the anoxic pathway, yields a net production of high-energy
phosphate bonds by well known substrate level phosphorylation
reactions. In the anoxic pathway, however, this is not the
only ATP generating system. (The different nucleotide phos-
phates are treated as thermodynamically identical.) NADH-
dependent phosphorylation by an anoxic electron transport
chain with fumarate - analogous to oxygen - acting as ter-
minal electron acceptor was demonstrated in parasitic hel-
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minths "(15,16,17,18,57,98,102,124)" and seems to operate in
other invertebrates "(40)" and in vertebrates as well "(43,
44,88,92,119)", As the reaction

2= 2a

(1) Fumarate + NADH + H® = Succinate + NAD*

proceeds with AG? (change of free energy in standard state
conditions at pH 7) of -67.7 kJ mole~! as calculated from
standard tables "(66)", the free energy retained in ATP
(30.5 kJ or 7.3 kcal mole'q; "(62)") equals 45 %. The same
thermodynamic efficiency is given for the aerobic electron
transport chain (42 %;"(62)"). At "near physiological condi-
tions"(see Tab.1) AG of reaction (1) amounts te -67.8 kJ
mole~™!, and thermodynamic efficiencies are 70 % and 65 % for
the anoxic and aerobic electron-transfer-coupled phosphory-
lations respectively.

Summarizing, half a glucose unit catabolized via the anoxic
pathway (reaction 2) yields a net of 2 ATP. Redox balance is
maintained if this reaction proceeds at a rate five times

the rate of succinate formation via the tricarboxylic acid
cycle (reaction 3): Two moles of phosphoenolpyruvate are con-
verted into one mole of oxaloacetate and pyruvate respective-
ly, giving rise to citrate by a condensation reaction (see
Fig.1). In this way one mole of succinate?” (Suc) is derived
from one mole of glucose (Glec), accompanied by three substra=-
te level phosphorylation reactions.

(2) 0.5 Gle + HCO. + NADH = Suc + 2 HEO + NaD”*

3
(3) Gle + 4 Hy,0 + 5 NAD' = Suc + 2 HCO3™ + 5 NADH + 9 H'
(&) Glc + 0.86 HCO~ = 1.71 Suc + 1.71 H,0 + 2.57 H'

A resultant reaction (4) proceeds with a net vield of 3.714
mole of ATP mole_ﬁ glucose. Compared to lactic fermentation
the "succinic" fermentation produces 85 % more ATP per mole
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(=} Units are in kJ or kcal mole” glucose;
Temp.25°C; AG” values are for unit activity and CO, (aqi: AG
values are for 0.2 atm 0,, 0.05 atm CO, (aq), pH 7 and 0.01 M
concentration of other reactants. Valugs of free energy are
calculated from data according to Burton and Krebs "(42)n
unless otherwise stated. AH values are calculated from heats
of combustion "(5)" unless otherwise stated, and no correc-
tions are made for heats of solution and dissociation of the
acids. Thermodynamic efficiency is the percentage of AG re-
tained in phosphorylation reactions (endergonic) per AG of
the exergonic reaction. The caloric efficiency is the per-
centage of maximal ATP turnover in mole per kJ heat produced.

a) Gle = 2 Lactate™ + 2 H'
b) Glc + 2 NH,"(aq) = 2 Alanine” + 2 H,0 + 4 H'

Alanine production is assumed to proceed by NHx fixation onto
pyruvate and therefore with maintenance of redgx balance in
the overall reaction. Transaminase reactions, however, pro-
ceeding without changes of free energy, may also play an
important role. AH was calculated from heats of formation.

¢) Glc + 0.857 HCO;~ = 1.714 Suc® + 1.714 H,0 + 2.571 H*

d) Glc = 1.714 Prp~ + 0.857 HCOy™ + 2.571 ut

Production eof proprionate (Prp) from succinate (Suc) via the
reversal of a reaction seguence Kknown from catabolism of iso-
leucine and methionine was demonstrated in parasitic hel-
minths "(96, 123)", Therefore the same considerations apply
to "propionic" and "succiniec" fermentation (see text), but
an additional substrate level phosphorylation is probably
driven by decarboxylation of succinate. As calculated from
data of Wood "(120)", the biotin linked reaction

Methylmalonyl-CoA™ + HEO = Propionyl-CoA + HC03'

proceeds with AG = -33 kJ. As the methylmalonylmutase
reaction and the transfer of CoA from propionate to succina-
te are readily reversible "(120)", the same value may be ta-
ken for approximating the overall decarboxylation of succina-
te to yield propionate.

e) Glc + 0.667 HCOB' =
= 0.667 Act™ + 1.333 Suc2~ + 1.333 H,0 + 2.667 H
f) Gle = 0.667 Act™ + 1.333 Prp~ + 0.667 HCO5 + 2.667 H*

Formation of acetate delivers reducing equivalents for two
fumarate reductase reactions. Therefore the NAD/NADH ratio



288

is maintained, if acetate and succinate or propionate are
produced in a ratio of 1 : 2. ATP production by acetate ki-
nase is known from micro-organisms, but has not yet been
proved in invertebrates.

of glucose, "propionic" fermentation probably 170 % more.

In the latter case thermodynamic efficiency would approxima-
te 80 %. Higher yields of ATP seem thermodynamically unfeasib-
le. Increased efficiencies of phosphorylation in anoxic path-
ways are due not only to an increased thermodynamic efficien-
cy, but also to larger increments of free energy in the re-
spective reactions (Tab.1).

PRIMARY AND SECONDARY END PRODUCTS

The relative importance of the different anoxic pathways de-
termines the overall efficiency of the anoxic energy metabo-
lism. Due to short experimental acclimation periods (in the
range of a few hours) the quantitative importance of lactate,
alanine, and of succinate as end products of the anoxic
energy metabolism has been largely overestimated. In these
studies different sections were taken through a dynamic bio-
chemical transitory process and described as different pat-
terns of anoxic intermediary metabolism. This led to a con-
fusing picture of various traits of metabolic strategies.
Abundant evidence now exists that in invertebrates resistant
to anoxia, lactate and alanine are initial end products only,
accumulating in relatively small amounts during the first

12 to 24 hours of anoxibiosis "(10,27,55,113)". As time of
anoxibiosis proceeds "propionic" and/or "acetic-propionic"
fermentation become increasingly more important (Tab.2),
"(30,56,135)", whereby in some cases the two volatile fatty
acids are excreted after condensation to methylbutyrate
"(21.97)".
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Iab.2, Production of organic acids in pmol/g dry weight/h by
Tubifex during successive periods of anoxic aceclimation. The
percentage of total organic acids is given in brackets. Cal-
culated from data of Schottler and Schroff "(101)".

hours 0 - 14 14 - 24 24 - 38 38 - 48
lactate 0.58 (4.2) - - i
alanine 1'62(11.8} Doil'il (&*8} 0.06 (0.6) -0.06

1-9951.0) 2-%6(p5.1) 2550

340137 5y 4-50(47.9) 6-59g5 o)

glucosyl-2) 7.42 4,78 4.89 5.26
equivalents
glycogen-P) 6.29 5.59 4,77 3.52
consumption

a) The rate of consumption of glucosyl-equivalents is calcu-
lated from the rate of formation of end products under the
assumption that glycogen is the sole source of energy and
redox balance is maintained. The difference between this

and the sum of organic acid production x 2~ is proportional
to the rate of the tricarboxylic acid cycle functioning in
its forward direction.

b) Measured glycogen consumption in umol glucosyl-equiva-
lents/g dry weight/h.

The significance of lactate and alanine as primary end pro-
ducts of anoxibiosis 1s therefore seen in their influence on
the activities of regulatory enzymes during the aerobic-
anoxic transition of intermediary metabolism "(46,47,65,75,
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74,116,130,131,132,133,134)". Accumulation of these primary
end products, the formation of which is less efficient in ge-
nerating high-energy phosphate bonds, initiates a new state
of anoxi-metabolic equilibrium. Essentially, the observed
trend can be interpreted as the general tendency to stabilize
anoxic pathways with the highest yield of ATP (Fig.2).

APPLICATION OF DIRECT CALORIMETRIC METHODS

The confusing variety of species-specific pattermsof organic
acid production not only during anoxic acclimation, but in
different tissues "(1,14,31,64)", developmental stages " (48,
91,113)", different sexes "(9)", and seasons "(121)" makes
the blochemical assessment of the level of anoxic energy me-—
tabolism a tedious task. The variable ratio of accumulated
and excreted end products "(22,72,101)" necessitates the con-
sideration of both. Discontinuous carcass analysis is there-
fore unavoidable, whereby subtractions of estimated wvalues
measured on different individuals will introduce substantial
errors due to considerable inhomogeneities, especially when
large gquantities of analytical substances (e.g.glycogen) are
involved "(27,30,1701,138,139)".

Heat production is an unspecific measure of the enthalpy
changes accompanying all metabolic reactions of an organism.
In long-term experiments continuous registration of heat
production is possible, until a new steady state of anoxic
energy metabolism - if ever - is reached. Turnover of ATP
comprises the essential parameter of interest, since the
scope of energy metabolism is the generation of high energy
phosphate bonds as intermediate driving forces for all ener-
£y requiring biological processes. Provided that net synthe-
sis is negligible during the experimental period "(49)", the
caloric efficiency of ATP production may be calculated from
the relative contribution of the different anoxic pathways
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Fig.2. Anoxic acclimation of anoxibiotic invertebrates:

Tubifex (open circles; calculated from data in Tab.2) and
Anodonta (full circles; calculated from data of Gidde et al.

. Solid line: Molar efficiency of ATP production in
catabolism of glycogen. For every mole of glucose derived
from glycogen one mole of ATP is saved, which is added to the
maximal ATP production in the different anoxic pathways (Tab.
1). The arrow "100 % propionate" indicates the maximal molar
efficiency of ATP production in pure "propionic" fermentation.
Dashed_line: Caloric efficiency. Values of Tab.1 are used in
their proportional contribution to the anoxic metabolism
without correcting for glycogen degradation. The calculated
mean of total heat production is 85 pWw/g dry weight of
Tubifex and 97 puwW/g dry weight of Anodonta. The arrow "aero-
bic" indicates the caloric efficiency level of aerobic meta-
bolism. Dotted line: Percentage of propionate on total organic

acid production.
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to the overall metabolism (Tab.1). The biological interpreta-
tion of calorimetric data is difficult especially for the
transitory period, but may be approximated by supplementary
biochemical investigations (Fig.2). However, various side
reactions "(25)", or energy production by "anoxic endoge-
nous oxidation" "(42,54,125,126,127,128)" and net utiliza-
tion of energy reserves "(109,117,118,129)" may obscure the
calculated values.

Anoxic metabolism of diving vertebrates "(52,83)" and of
whole benthic communities "(79,80)" was studied using direct
calorimetric methods, but data of heat production of anoxi-
biotic invertebrates are not available so far. Inconsisten-
cies of the presented calculations with future experimental
investigations may reveal some gaps in our understanding of
the biochemical mechanisms promoting anoxic animal life. In-
corporating recent refinements of microcalorimetric techniques
"(8,13,61,111)", the application of direct calorimetry to the
study of ecological energetics will therefore contribute to
better insight into the guantitative relationships of inver-
tebrate anoxibiosis.

SUMMARY

New insight into the biochemical mechanism of invertebrate
anoxibiosis made possible the calculation of the free-energy
changes associated with the generation of high-energy bonds
in nucleoside triphosphates (ATP, GTP, ITP) under anoxic con-
ditions. The values obtained are compared with thermodynamic
data of aerobic and fermentative energy production, and indi-
cate a selection towards inereased energetic efficiency of
biochemical pathways leading to less toxic and readily ex-~
cretable end products in anoxibiotic invertebrates. The ther-
modynamic model is mainly based upon a metabolic scheme ela-
borated on intertidal bivalves by de Zwaan et al. "(135)",
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benthic oligochaetes "(101)" and fresh-water bivalves n(30)".
It may provide a general hypothesis for the energetic proces-
ses which operate in a variety of ecological and taxonomic
groups of anoxibiotic animals.

This work was supported by the "Fonds zur Foérderung der
wissenschaftlichen Forschung in Osterreich", project No.2919.
I thank Prof.Dr.W.Wieser for discussions and reading the
manuscript.
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