Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Lores-Arnaiz 2016 Neurochem Res"

From Bioblast
Line 7: Line 7:
|abstract=Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton LEAK were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.
|abstract=Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton LEAK were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.
|keywords=Synaptosomes, Non-synaptic mitochondria, Aging, Cerebral cortex, Respiration, Depolarization
|keywords=Synaptosomes, Non-synaptic mitochondria, Aging, Cerebral cortex, Respiration, Depolarization
|mipnetlab=AR Buenos Aires Boveris A, DE Bremerhaven Mark FC
|mipnetlab=AR Buenos Aires Boveris A
}}
}}
{{Labeling
{{Labeling
|area=Respiration, mt-Biogenesis;mt-density, mt-Membrane
|area=Respiration, mt-Biogenesis;mt-density, mt-Membrane
|diseases=Aging;senescence
|organism=Mouse
|organism=Mouse
|tissues=Nervous system
|tissues=Nervous system
|preparations=Intact cells, Isolated mitochondria
|preparations=Intact cells, Isolated mitochondria
|enzymes=Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase
|enzymes=Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase
|diseases=Aging;senescence
|couplingstates=LEAK, ROUTINE, OXPHOS, ETS
|couplingstates=LEAK, ROUTINE, OXPHOS, ETS
|pathways=N, S
|pathways=N, S

Revision as of 11:59, 11 July 2017

Publications in the MiPMap
Lores-Arnaiz S, Lombardi P, Karadayian AG, Orgambide F, Cicerchia D, Bustamante J (2016) Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging. Neurochem Res 41:353-63.

Β» PMID: 26818758

Lores-Arnaiz S, Lombardi P, Karadayian AG, Orgambide F, Cicerchia D, Bustamante J (2016) Neurochem Res

Abstract: Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton LEAK were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging. β€’ Keywords: Synaptosomes, Non-synaptic mitochondria, Aging, Cerebral cortex, Respiration, Depolarization

β€’ O2k-Network Lab: AR Buenos Aires Boveris A


Labels: MiParea: Respiration, mt-Biogenesis;mt-density, mt-Membrane  Pathology: Aging;senescence 

Organism: Mouse  Tissue;cell: Nervous system  Preparation: Intact cells, Isolated mitochondria  Enzyme: Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase 

Coupling state: LEAK, ROUTINE, OXPHOS, ETS"ETS" is not in the list (LEAK, ROUTINE, OXPHOS, ET) of allowed values for the "Coupling states" property.  Pathway: N, S  HRR: Oxygraph-2k 

2016-03