Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Ottolenghi 2020 Minerva Anestesiol

From Bioblast
Publications in the MiPMap
Ottolenghi S, Sabbatini G, Brizzolari A, Samaja M, Chiumello D (2020) Hyperoxia and oxidative stress in anesthesia and critical care medicine. Minerva Anestesiol 86:64-75. doi: 10.23736/S0375-9393.19.13906-5

ยป PMID: 31680497 Open Access

Ottolenghi S, Sabbatini G, Brizzolari A, Samaja M, Chiumello D (2020) Minerva Anestesiol

Abstract: Oxygen administration is particularly relevant in patients undergoing surgery under general anesthesia and in those who suffer from acute or critical illness. Nevertheless, excess O2, or hyperoxia, is also known to be harmful. Toxicity arises from the enhanced formation of reactive oxygen species (ROS) that, exceeding the antioxidant defense, may generate oxidative stress. Oxidative stress markers are used to quantify ROS toxicity in clinical and non-clinical settings and represent a promising tool to assess the optimal FiO2 in anesthesia and critical care setting. Despite controversial, the guidelines for the regulation of FiO2 in such settings suggest the adoption of high perioperative oxygen levels. However, hyperoxia has also been shown to be an independent mortality risk factor in critically ill patients. In this literature review, we discuss the biochemical mechanisms behind oxidative stress and the available biomarkers for assessing the pro-oxidant vs antioxidant status. Then, we summarize recent knowledge on the hyperoxia-related consequences in the most common anesthesia and critical care settings, such as traumatic brain injury or cardiac arrest. To this purpose, we searched the PubMed database according to the following combination of key words: ("hyperoxia" OR "FiO2" OR "oxygen therapy") AND ("oxidative stress" OR "ROS" OR "RNS" OR "lipid peroxidation") AND ("anesthesia" OR "surgery" OR "intensive care"). We focused in the results from the past 20 years. Available evidence points toward a conservative monitoring and use of oxygen, unless there is solid proof of its efficacy.

โ€ข Bioblast editor: Gnaiger E

Cited by

  • Komlรณdi T, Sobotka O, Gnaiger E (2021) Facts and artefacts on the oxygen dependence of hydrogen peroxide production using Amplex UltraRed. Bioenerg Commun 2021.4. https://doi:10.26124/BEC:2021-0004

Labels:

Stress:Oxidative stress;RONS, Hypoxia  Organism: Human 


Regulation: Redox state 



MitoFit 2021 AmR-O2