Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "Adipocyte hypertrophy is the main cause of obesity. A deeper understanding of the molecular mechanisms regulating adipocyte dysfunction may help to plan strategies to treat/prevent obesity and its metabolic complications. Here, we investigated ''in vitro'' the molecular alterations associated with early adipocyte hypertrophy, focusing on mitochondrial dysfunction. As model of adipocyte hypertrophy, we employed 3T3-L1 preadipocytes firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids. As a function of differentiation and hypertrophy, we assessed triglyceride content, lipid droplet size, radical homeostasis by spectrophotometry and microscopy, as well as the expression of PPARγ, adiponectin and metallothioneins. Mitochondrial status was investigated by electron microscopy, Oxygraph-2k (O2K) high-resolution respirometry, fluorimetry and western blot. Compared to mature adipocytes, hypertrophic adipocytes showed increased triglyceride accumulation and lipid peroxidation, larger or unique lipid droplet, up-regulated expression of PPARγ, adiponectin and metallothioneins. At mitochondrial level, early-hypertrophic adipocytes exhibited: (i) impaired mitochondrial oxygen consumption with parallel reduction in the mitochondrial complexes; (ii) no changes in citrate synthase and HSP60 expression, and in the inner mitochondrial membrane polarization; (iii) no stimulation of mitochondrial fatty acid oxidation. Our findings indicate that the content, integrity, and catabolic activity of mitochondria were rather unchanged in early hypertrophic adipocytes, while oxygen consumption and oxidant production were altered. In the model of early adipocyte hypertrophy exacerbated oxidative stress and impaired mitochondrial respiration were observed, likely depending on reduction in the mitochondrial complexes, without changes in mitochondrial mass and integrity.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Baldini 2021 Life Sci  + (Adipocyte hypertrophy is the main cause ofAdipocyte hypertrophy is the main cause of obesity. A deeper understanding of the molecular mechanisms regulating adipocyte dysfunction may help to plan strategies to treat/prevent obesity and its metabolic complications. Here, we investigated ''in vitro'' the molecular alterations associated with early adipocyte hypertrophy, focusing on mitochondrial dysfunction.</br></br>As model of adipocyte hypertrophy, we employed 3T3-L1 preadipocytes firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids. As a function of differentiation and hypertrophy, we assessed triglyceride content, lipid droplet size, radical homeostasis by spectrophotometry and microscopy, as well as the expression of PPARγ, adiponectin and metallothioneins. Mitochondrial status was investigated by electron microscopy, Oxygraph-2k (O2K) high-resolution respirometry, fluorimetry and western blot.</br></br>Compared to mature adipocytes, hypertrophic adipocytes showed increased triglyceride accumulation and lipid peroxidation, larger or unique lipid droplet, up-regulated expression of PPARγ, adiponectin and metallothioneins. At mitochondrial level, early-hypertrophic adipocytes exhibited: (i) impaired mitochondrial oxygen consumption with parallel reduction in the mitochondrial complexes; (ii) no changes in citrate synthase and HSP60 expression, and in the inner mitochondrial membrane polarization; (iii) no stimulation of mitochondrial fatty acid oxidation. Our findings indicate that the content, integrity, and catabolic activity of mitochondria were rather unchanged in early hypertrophic adipocytes, while oxygen consumption and oxidant production were altered.</br></br>In the model of early adipocyte hypertrophy exacerbated oxidative stress and impaired mitochondrial respiration were observed, likely depending on reduction in the mitochondrial complexes, without changes in mitochondrial mass and integrity.anges in mitochondrial mass and integrity.)