Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Uncoupling proteins"

From Bioblast
Line 1: Line 1:
{{MitoPedia
{{MitoPedia
|abbr=UCP
|abbr=UCP
|description='''Uncoupling proteins''' (UCPs) are mitochondrial anion carrier proteins that can be found in the inner mitochondrial membranes of animals and plants. [[Uncoupling protein 1 |UCP1]] acts as an uncoupler by dissipating the electrochemical proton gradient ([[mitochondrial membrane potential]]), generated by the [[electron transfer system]] by pumping protons from the mitochondrial matrix to the mitochondrial intermembrane space.
|description='''Uncoupling proteins''' (UCPs) are mitochondrial anion carrier proteins that can be found in the inner mitochondrial membranes of animals and plants. [[Uncoupling protein 1 |UCP1]] acts as an [[uncoupler]] by dissipating the electrochemical proton gradient ([[mitochondrial membrane potential]]), generated by the [[electron transfer system]] by pumping protons from the mitochondrial matrix to the mitochondrial intermembrane space.
}}
}}
{{MitoPedia topics
{{MitoPedia topics

Revision as of 15:31, 4 June 2017


high-resolution terminology - matching measurements at high-resolution


Uncoupling proteins

Description

Uncoupling proteins (UCPs) are mitochondrial anion carrier proteins that can be found in the inner mitochondrial membranes of animals and plants. UCP1 acts as an uncoupler by dissipating the electrochemical proton gradient (mitochondrial membrane potential), generated by the electron transfer system by pumping protons from the mitochondrial matrix to the mitochondrial intermembrane space.

Abbreviation: UCP


MitoPedia topics: Uncoupler 

Communicated by Bufe A 2017-05-04.

Uncoupling protein homologues

The gene family of uncoupling proteins (UCP) includes five mitochondrial solute carriers 25 (SLC25), named UCP1 (SLC25A7), UCP2 (SLC25A48), UCP3 (SLC25A9), UCP4 (SLC25A27) and UCP5 (SLC25A14).[1]. These proteins have a tripartite structure and are located in the inner membrane of mitochondria. Presumably all of them contribute to the metabolic regulation elicited by cold exposure, including ROS and lipid metabolism, apoptosis and thermogenesis.[2]
The thermogenic function of UCP1, which was the first uncoupling protein to be discovered in 1978 [3], is already well established, whereas the exact functions of the closely related paralogues UCP2 and UCP3 are yet to be investigated. [4] [5]. UCP4 and UCP5 are primarily expressed in the central nervous system (CNS) where they function as essential uncouplers of oxidative phosphorylation, thereby exerting an important protective function for cells by reducing oxidative stress (ROS).

References

  1. Ramsden DB, Ho PW-L, Ho JW-M, Liu HF, So DHF, Tse HM, Chan KH, Ho SL (2012) Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain and Behavior 2:468–78.
  2. Criscuolo F, Gonzalez‐Barroso MdM, Bouillaud F, Ricquier D, Miroux B, Sorci G (2005) Mitochondrial uncoupling proteins: New perspectives for evolutionary ecologists. Amer Naturalist 166:686-99.
  3. Nicholls DG, Bernson VSM, Heaton GM (1978) The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. In: Girardier L, Seydoux J, eds. Effectors of thermogenesis: Proceedings of a symposium held at geneva (switzerland) on 14 to 16 july 1977. Basel: Birkhäuser Basel. p89-93.
  4. Cannon B, Nedergaard J (2004). Brown adipose tissue: Function and physiological significance. Physiol Rev 84:277-359.
  5. Ricquier D, Bouillaud F (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3, STUCP and ATUCP. Biochem J 345:161-79.