Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Category:Ambiguity crisis - NAD and H+"

From Bioblast
Line 1: Line 1:
{{Template:Correction NAD and H+}}
{{Template:Correction NAD and H+}}


== The CI substrate is NADH + H<sup>+</sup> ==
== Supplement 1. The CI substrate is NADH + H<sup>+</sup> ==
:: '''In [[mitochondrial preparations]], NADH-generating substrates, N, of various dehydrogenases (pyruvate, glutamate, malate, or other ET-pathway competent N-type substrate combinations) are applied to support respiration through Complex I ([[Gnaiger_2020_BEC_MitoPathways |Gnaiger 2020]]). Importantly, malate and other N-type substrates are not CI-substrates.'''
:: '''In [[mitochondrial preparations]], NADH-generating substrates, N, of various dehydrogenases (pyruvate, glutamate, malate, or other ET-pathway competent N-type substrate combinations) are applied to support respiration through Complex I ([[Gnaiger_2020_BEC_MitoPathways |Gnaiger 2020]]). Importantly, malate and other N-type substrates are not CI-substrates.'''


:::::: [[File:Bottje 2019 Poult Sci CORRECTION.png|400px|link=Bottje 2019 Poult Sci]]
:::::: [[File:Bottje 2019 Poult Sci CORRECTION.png|400px|link=Bottje 2019 Poult Sci]]
:::: '''xx''' Bottje WG (2019) Oxidative metabolism and efficiency: the delicate balancing act of mitochondria. '''Poult Sci''' 98:4223-30. - [[Bottje 2019 Poult Sci |»Bioblast link«]]
:::: '''xx''' Bottje WG (2019) Oxidative metabolism and efficiency: the delicate balancing act of mitochondria. '''Poult Sci''' 98:4223-30. - [[Bottje 2019 Poult Sci |»Bioblast link«]]
:::: NADH+H<sup>+</sup> should be indicated as substrate of CI compared to succinate as substrate of CII.
:::: '''Fig. 1''' of Bottje (2019): NADH+H<sup>+</sup> should be indicated as substrate of CI compared to succinate as substrate of CII. Their oxidation is a 2-electron reaction.
<br>
S1




== Electron transfer from CI ⟶ CII ⟶ CIII ==
== Supplement 2. Electron transfer from CI ⟶ CII ⟶ CIII ==


[[File:Hatefi 1962 NS 2012.jpg|right|500px|link=Q-junction|Q-junction]]
[[File:Hatefi 1962 NS 2012.jpg|right|500px|link=Q-junction|Q-junction]]
Line 17: Line 17:
:::::: [[File:Cowan 2019 CNS Neurosci Ther CORRECTION.png|400px|link=Cowan 2019 CNS Neurosci Ther]]
:::::: [[File:Cowan 2019 CNS Neurosci Ther CORRECTION.png|400px|link=Cowan 2019 CNS Neurosci Ther]]
:::: '''xx''' Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. '''CNS Neurosci Ther''' 25:825-36. - [[Cowan 2019 CNS Neurosci Ther |»Bioblast link«]]
:::: '''xx''' Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. '''CNS Neurosci Ther''' 25:825-36. - [[Cowan 2019 CNS Neurosci Ther |»Bioblast link«]]
<br>
S2


:::::: [[File:Huss 2005 J Clin Invest CORRECTION.png|400px|link=Huss 2005 J Clin Invest]]
:::::: [[File:Huss 2005 J Clin Invest CORRECTION.png|400px|link=Huss 2005 J Clin Invest]]
:::: '''xx''' Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. '''J Clin Invest''' 115:547-55. - [[Huss 2005 J Clin Invest |»Bioblast link«]]
:::: '''xx''' Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. '''J Clin Invest''' 115:547-55. - [[Huss 2005 J Clin Invest |»Bioblast link«]]
<br>
S2




== NADH + H<sup>+</sup> ⟶ NAD<sup>+</sup> + (2)H<sup>+</sup> (+2e<sup>-</sup>) ==
== Supplement 3. NADH + H<sup>+</sup> ⟶ NAD<sup>+</sup> + (2)H<sup>+</sup> (+2e<sup>-</sup>) ==


:: '''It is important to distinguish in the oxidation of NADH the H<sup>+</sup> that is consumed as a substrate (on the left side of the equation) from the 2H<sup>+</sup> that are donated in the redox reaction of H<sup>+</sup>-linked electron transfer to the reductant FMN:'''
:: '''It is important to distinguish in the oxidation of NADH the H<sup>+</sup> that is consumed as a substrate (on the left side of the equation) from the 2H<sup>+</sup> that are donated in the redox reaction of H<sup>+</sup>-linked electron transfer to the reductant FMN:'''
Line 33: Line 33:
:::: '''xx''' Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. '''Front Cell Neurosci''' 11:209. - [[Mathur 2017 Front Cell Neurosci |»Bioblast link«]]
:::: '''xx''' Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. '''Front Cell Neurosci''' 11:209. - [[Mathur 2017 Front Cell Neurosci |»Bioblast link«]]
:::: '''Fig. 5''' of Mathur et al (2017): H<sup>+</sup> is consumed in the ''redox chemical'' (scalar) reaction of H<sup>+</sup>-linked electron transfer catalyzed by CI, NADH + H<sup>+</sup> → NAD<sup>+</sup> + 2H<sup>+</sup>. This same H<sup>+</sup> is shown to be transported in the ''vectorial'' H<sup>+</sup> translocation from the matrix side across the mtIM (H<sup>+</sup><sub>neg</sub> → H<sup>+</sup><sub>pos</sub>). The scalar and vectorial transformations must be distinguished. When the path is shown of the single electron (instead of 2{H<sup>+</sup>+e<sup>-</sup>}) from NADH to ubiquinone, then it is particularly confusing when the 2H<sup>+</sup> in the H<sup>+</sup>-linked electron transfer are indicated as remaining in the matrix.
:::: '''Fig. 5''' of Mathur et al (2017): H<sup>+</sup> is consumed in the ''redox chemical'' (scalar) reaction of H<sup>+</sup>-linked electron transfer catalyzed by CI, NADH + H<sup>+</sup> → NAD<sup>+</sup> + 2H<sup>+</sup>. This same H<sup>+</sup> is shown to be transported in the ''vectorial'' H<sup>+</sup> translocation from the matrix side across the mtIM (H<sup>+</sup><sub>neg</sub> → H<sup>+</sup><sub>pos</sub>). The scalar and vectorial transformations must be distinguished. When the path is shown of the single electron (instead of 2{H<sup>+</sup>+e<sup>-</sup>}) from NADH to ubiquinone, then it is particularly confusing when the 2H<sup>+</sup> in the H<sup>+</sup>-linked electron transfer are indicated as remaining in the matrix.
<br>
S3


:::::: [[File:Rosca 2012 Diabetes CORRECTION.png|400px|link=Rosca 2012 Diabetes]]
:::::: [[File:Rosca 2012 Diabetes CORRECTION.png|400px|link=Rosca 2012 Diabetes]]
:::: '''xx''' Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL (2012) Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. '''Diabetes''' 61:2074-83. - [[Rosca 2012 Diabetes |»Bioblast link«]]
:::: '''xx''' Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL (2012) Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. '''Diabetes''' 61:2074-83. - [[Rosca 2012 Diabetes |»Bioblast link«]]
:::: '''Fig. 5''' of Rosca et al (2012): Oxidation of succinate to fumarate reduces ubiquinone to ubiquinol through oxidation of FAD to FADH<sub>2</sub> and further redox steps in CII. Likewise, oxidation of NADH + H<sup>+</sup> to NAD<sup>+</sup> reduces ubiquinone to ubiquinol through oxidation of FMN to FMNH<sub>2</sub> and further redox steps in CI. This reduction of UQ to UQH<sub>2</sub> effectively consumes the 2H<sup>+</sup> together with 2e<sup>-</sup>. Hence, the 2H<sup>+</sup> should not be shown to be formed in the matrix. Indication of H<sup>+</sup>-linked electron transfer as 2{H<sup>+</sup>+e<sup>-</sup>} eliminates the ambiguity.
:::: '''Fig. 5''' of Rosca et al (2012): Oxidation of succinate to fumarate reduces ubiquinone to ubiquinol through oxidation of FAD to FADH<sub>2</sub> and further redox steps in CII. Likewise, oxidation of NADH + H<sup>+</sup> to NAD<sup>+</sup> reduces ubiquinone to ubiquinol through oxidation of FMN to FMNH<sub>2</sub> and further redox steps in CI. This reduction of UQ to UQH<sub>2</sub> effectively consumes the 2H<sup>+</sup> together with 2e<sup>-</sup>. Hence, the 2H<sup>+</sup> should not be shown to be formed in the matrix. Indication of H<sup>+</sup>-linked electron transfer as 2{H<sup>+</sup>+e<sup>-</sup>} eliminates the ambiguity.
<br>
S3


:::::: [[File:Nakane 2020 J Intensive Care CORRECTION.png|400px|link=Nakane 2020 J Intensive Care]]
:::::: [[File:Nakane 2020 J Intensive Care CORRECTION.png|400px|link=Nakane 2020 J Intensive Care]]
:::: '''##''' Nakane M (2020) Biological effects of the oxygen molecule in critically ill patients. '''J Intensive Care''' 8:95. - [[Nakane 2020 J Intensive Care |»Bioblast link«]]
:::: '''##''' Nakane M (2020) Biological effects of the oxygen molecule in critically ill patients. '''J Intensive Care''' 8:95. - [[Nakane 2020 J Intensive Care |»Bioblast link«]]
:::: '''##''' Copied with permission from: Hall J (2016) Guyton and Hall Textbook of Medical Physiology. 13. Elsevier, Philadelphia.
:::: '''##''' Copied with permission from: Hall J (2016) Guyton and Hall Textbook of Medical Physiology. 13. Elsevier, Philadelphia.
<br>
S3


== NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> (+ 2e<sup>-</sup>) ==
== Supplement 4. NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> (+ 2e<sup>-</sup>) ==


:: '''In the chemical equation for oxidation of NADH + H<sup>+</sup> by CI,'''
:: '''In the chemical equation for oxidation of NADH + H<sup>+</sup> by CI,'''
Line 57: Line 57:




=== NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> + 2e<sup>-</sup> ===
'''<big>4.1. NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> + 2e<sup>-</sup></big>'''


:: '''Electron flow from NADH to FMN in CI proceeds as a 2e<sup>-</sup> transfer. The 2e<sup>-</sup> are never free floating in the matrix but belong to the arrow reaching ubiquinone UQ. 2-electron transfer is linked to 2H<sup>+</sup> transfer, hence the meaning of the single H<sup>+</sup> — written on the right side of the equation — is elusive.'''
:: '''Electron flow from NADH to FMN in CI proceeds as a 2e<sup>-</sup> transfer. The 2e<sup>-</sup> are never free floating in the matrix but belong to the arrow reaching ubiquinone UQ. 2-electron transfer is linked to 2H<sup>+</sup> transfer, hence the meaning of the single H<sup>+</sup> — written on the right side of the equation — is elusive.'''
Line 63: Line 63:
:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::::: [[File:Ahmad 2022 StatPearls CORRECTION.png|400px|link=Ahmad 2022 StatPearls Publishing]]
:::: '''xx''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. '''StatPearls Publishing''' StatPearls [Internet], Treasure Island (FL). - [[Ahmad 2022 StatPearls Publishing |»Bioblast link«]]
:::: '''xx''' Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. '''StatPearls Publishing''' StatPearls [Internet], Treasure Island (FL). - [[Ahmad 2022 StatPearls Publishing |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Avram 2021 Int J Mol Sci CORRECTION.png|400px|link=Avram 2021 Int J Mol Sci]]
:::::: [[File:Avram 2021 Int J Mol Sci CORRECTION.png|400px|link=Avram 2021 Int J Mol Sci]]
:::: '''xx''' Avram VF, Chamkha I, Åsander-Frostner E, Ehinger JK, Timar RZ, Hansson MJ, Muntean DM, Elmér E (2021) Cell-permeable succinate rescues mitochondrial respiration in cellular models of statin toxicity. '''Int J Mol Sci''' 22:424. - [[Avram 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Avram VF, Chamkha I, Åsander-Frostner E, Ehinger JK, Timar RZ, Hansson MJ, Muntean DM, Elmér E (2021) Cell-permeable succinate rescues mitochondrial respiration in cellular models of statin toxicity. '''Int J Mol Sci''' 22:424. - [[Avram 2021 Int J Mol Sci |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Esterhazy 2008 Biochemistry CORRECTION.png|400px|link=Esterhazy 2008 Biochemistry]]
:::::: [[File:Esterhazy 2008 Biochemistry CORRECTION.png|400px|link=Esterhazy 2008 Biochemistry]]
:::: '''xx''' Esterházy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. '''Biochemistry''' 47:3964-71. - [[Esterhazy 2008 Biochemistry |»Bioblast link«]]
:::: '''xx''' Esterházy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. '''Biochemistry''' 47:3964-71. - [[Esterhazy 2008 Biochemistry |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Friedman 2021 Quantum Reports CORRECTION.png|400px|link=Friedman 2021 Quantum Reports]]
:::::: [[File:Friedman 2021 Quantum Reports CORRECTION.png|400px|link=Friedman 2021 Quantum Reports]]
:::: '''xx''' Friedman J, Mourokh L, Vittadello M (2021) Mechanism of proton pumping in Complex I of the mitochondrial respiratory chain. '''Quantum Reports''' 3:425-34. - [[Friedman 2021 Quantum Reports |»Bioblast link«]]
:::: '''xx''' Friedman J, Mourokh L, Vittadello M (2021) Mechanism of proton pumping in Complex I of the mitochondrial respiratory chain. '''Quantum Reports''' 3:425-34. - [[Friedman 2021 Quantum Reports |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Hummer 2016 Biochim Biophys Acta CORRECTION.png|400px|link=Hummer 2016 Biochim Biophys Acta]]
:::::: [[File:Hummer 2016 Biochim Biophys Acta CORRECTION.png|400px|link=Hummer 2016 Biochim Biophys Acta]]
:::: '''xx''' Hummer G, Wikström M (2016) Molecular simulation and modeling of complex I. '''Biochim Biophys Acta''' 1857:915-21. - [[Hummer 2016 Biochim Biophys Acta |»Bioblast link«]]
:::: '''xx''' Hummer G, Wikström M (2016) Molecular simulation and modeling of complex I. '''Biochim Biophys Acta''' 1857:915-21. - [[Hummer 2016 Biochim Biophys Acta |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Luptak 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Luptak 2023 Antioxidants (Basel)]]
:::::: [[File:Luptak 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Luptak 2023 Antioxidants (Basel)]]
:::: '''xx''' Ľupták M, Fišar Z, Hroudová J (2023) Different effects of SSRIs, Bupropion, and Trazodone on mitochondrial functions and monoamine oxidase isoform activity. '''Antioxidants (Basel)''' 12:1208. - [[Luptak 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Ľupták M, Fišar Z, Hroudová J (2023) Different effects of SSRIs, Bupropion, and Trazodone on mitochondrial functions and monoamine oxidase isoform activity. '''Antioxidants (Basel)''' 12:1208. - [[Luptak 2023 Antioxidants (Basel) |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Martin 2017 Sci Rep CORRECTION.png|400px|link=Martin 2017 Sci Rep]]
:::::: [[File:Martin 2017 Sci Rep CORRECTION.png|400px|link=Martin 2017 Sci Rep]]
:::: '''xx''' Martin DR, Matyushov DV (2017) Electron-transfer chain in respiratory complex I. '''Sci Rep''' 7:5495. - [[Martin 2017 Sci Rep |»Bioblast link«]]
:::: '''xx''' Martin DR, Matyushov DV (2017) Electron-transfer chain in respiratory complex I. '''Sci Rep''' 7:5495. - [[Martin 2017 Sci Rep |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Rose 2019 Adis CORRECTION.png|400px|link=Rose 2019 Adis]]
:::::: [[File:Rose 2019 Adis CORRECTION.png|400px|link=Rose 2019 Adis]]
:::: '''xx''' Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. '''Adis, Singapore'''. - [[Rose 2019 Adis |»Bioblast link«]]
:::: '''xx''' Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. '''Adis, Singapore'''. - [[Rose 2019 Adis |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Sharpley 2006 J Biol Chem CORRECTION.png|400px|link=Sharpley 2006 J Biol Chem]]
:::::: [[File:Sharpley 2006 J Biol Chem CORRECTION.png|400px|link=Sharpley 2006 J Biol Chem]]
:::: '''xx''' Sharpley MS, Hirst J (2006) The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn<sup>2+</sup>. '''J Biol Chem''' 281:34803-9. - [[Sharpley 2006 J Biol Chem |»Bioblast link«]]
:::: '''xx''' Sharpley MS, Hirst J (2006) The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn<sup>2+</sup>. '''J Biol Chem''' 281:34803-9. - [[Sharpley 2006 J Biol Chem |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Tseng 2022 Cells CORRECTION.png|400px|link=Tseng 2022 Cells]]
:::::: [[File:Tseng 2022 Cells CORRECTION.png|400px|link=Tseng 2022 Cells]]
:::: '''xx''' Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. '''Cells''' 11:4020. - [[Tseng 2022 Cells |»Bioblast link«]]
:::: '''xx''' Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. '''Cells''' 11:4020. - [[Tseng 2022 Cells |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Vekshin 2020 Springer Cham 3.2 CORRECTION.png|400px|link=Vekshin 2020 Springer Cham]]
:::::: [[File:Vekshin 2020 Springer Cham 3.2 CORRECTION.png|400px|link=Vekshin 2020 Springer Cham]]
:::: '''τ''' Vekshin N (2020) Biophysics of mitochondria. '''Springer Cham''': 197 pp. - [[Vekshin 2020 Springer Cham |»Bioblast link«]]
:::: '''τ''' Vekshin N (2020) Biophysics of mitochondria. '''Springer Cham''': 197 pp. - [[Vekshin 2020 Springer Cham |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Wikstroem 2012 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=Wikstroem 2012 Proc Natl Acad Sci U S A]]
:::::: [[File:Wikstroem 2012 Proc Natl Acad Sci U S A CORRECTION.png|400px|link=Wikstroem 2012 Proc Natl Acad Sci U S A]]
:::: '''xx''' Wikström M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. '''Proc Natl Acad Sci U S A''' 109:4431-6.  - [[Wikstroem 2012 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::: '''xx''' Wikström M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. '''Proc Natl Acad Sci U S A''' 109:4431-6.  - [[Wikstroem 2012 Proc Natl Acad Sci U S A |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Yakovlev 2007 Biochemistry CORRECTION.png|400px|link=Yakovlev 2007 Biochemistry]]
:::::: [[File:Yakovlev 2007 Biochemistry CORRECTION.png|400px|link=Yakovlev 2007 Biochemistry]]
:::: '''xx''' Yakovlev G, Hirst J (2007) Transhydrogenation reactions catalyzed by mitochondrial NADH-ubiquinone oxidoreductase (Complex I). '''Biochemistry''' 46:14250-8. - [[Yakovlev 2007 Biochemistry |»Bioblast link«]]
:::: '''xx''' Yakovlev G, Hirst J (2007) Transhydrogenation reactions catalyzed by mitochondrial NADH-ubiquinone oxidoreductase (Complex I). '''Biochemistry''' 46:14250-8. - [[Yakovlev 2007 Biochemistry |»Bioblast link«]]
<br>
S4.1


:::::: [[File:Zu 2003 J Am Chem Soc CORRECTION.png|400px|link=Zu 2003 J Am Chem Soc]]
:::::: [[File:Zu 2003 J Am Chem Soc CORRECTION.png|400px|link=Zu 2003 J Am Chem Soc]]
:::: '''xx''' Zu Y, Shannon RJ, Hirst J (2003) Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). '''J Am Chem Soc''' 125:6020-1. - [[Zu 2003 J Am Chem Soc |»Bioblast link«]]
:::: '''xx''' Zu Y, Shannon RJ, Hirst J (2003) Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). '''J Am Chem Soc''' 125:6020-1. - [[Zu 2003 J Am Chem Soc |»Bioblast link«]]
<br>
S4.1




=== NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> + e<sup>-</sup> ===
'''<big>4.2. NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> + e<sup>-</sup></big>'''


:: '''The 2-electron transfer from NADH to CI is not well depicted in graphical representations suggesting the equation NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> + e<sup>-</sup>.'''
:: '''The 2-electron transfer from NADH to CI is not well depicted in graphical representations suggesting the equation NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> + e<sup>-</sup>.'''
Line 124: Line 124:
:::::: [[File:Brzezinski 2021 Chem Rev CORRECTION.png|400px|link=Brzezinski 2021 Chem Rev]]
:::::: [[File:Brzezinski 2021 Chem Rev CORRECTION.png|400px|link=Brzezinski 2021 Chem Rev]]
:::: '''xx''' Brzezinski P, Moe A, Ädelroth P (2021) Structure and mechanism of respiratory III-IV supercomplexes in bioenergetic membranes. '''Chem Rev''' 121:9644-73. - [[Brzezinski 2021 Chem Rev |»Bioblast link«]]
:::: '''xx''' Brzezinski P, Moe A, Ädelroth P (2021) Structure and mechanism of respiratory III-IV supercomplexes in bioenergetic membranes. '''Chem Rev''' 121:9644-73. - [[Brzezinski 2021 Chem Rev |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Burgin 2020 FEBS Lett CORRECTION.png|400px|link=Burgin 2020 FEBS Lett]]
:::::: [[File:Burgin 2020 FEBS Lett CORRECTION.png|400px|link=Burgin 2020 FEBS Lett]]
:::: '''xx''' Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. '''FEBS Lett''' 594:590-610. - [[Burgin 2020 FEBS Lett |»Bioblast link«]]
:::: '''xx''' Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. '''FEBS Lett''' 594:590-610. - [[Burgin 2020 FEBS Lett |»Bioblast link«]]
<br>
S4.2


:::::: [[File:DeBalsi 2017 Ageing Res Rev CORRECTION.png|400px|link=DeBalsi 2017 Ageing Res Rev]]
:::::: [[File:DeBalsi 2017 Ageing Res Rev CORRECTION.png|400px|link=DeBalsi 2017 Ageing Res Rev]]
:::: '''xx''' DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. '''Ageing Res Rev''' 33:89-104. - [[DeBalsi 2017 Ageing Res Rev |»Bioblast link«]]
:::: '''xx''' DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. '''Ageing Res Rev''' 33:89-104. - [[DeBalsi 2017 Ageing Res Rev |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Dhingra 2015 Cell Death Dis CORRECTION.png|400px|link=Dhingra 2015 Cell Death Dis]]
:::::: [[File:Dhingra 2015 Cell Death Dis CORRECTION.png|400px|link=Dhingra 2015 Cell Death Dis]]
:::: '''xx''' Dhingra R, Kirshenbaum LA (2015) Succinate dehydrogenase/complex II activity obligatorily links mitochondrial reserve respiratory capacity to cell survival in cardiac myocytes. '''Cell Death Dis''' 6:e1956. - [[Dhingra 2015 Cell Death Dis |»Bioblast link«]]
:::: '''xx''' Dhingra R, Kirshenbaum LA (2015) Succinate dehydrogenase/complex II activity obligatorily links mitochondrial reserve respiratory capacity to cell survival in cardiac myocytes. '''Cell Death Dis''' 6:e1956. - [[Dhingra 2015 Cell Death Dis |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Glombik 2021 Cells CORRECTION.png|400px|link=Glombik 2021 Cells]]
:::::: [[File:Glombik 2021 Cells CORRECTION.png|400px|link=Glombik 2021 Cells]]
:::: '''xx''' Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. '''Cells''' 10:2937. - [[Glombik 2021 Cells |»Bioblast link«]]
:::: '''xx''' Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. '''Cells''' 10:2937. - [[Glombik 2021 Cells |»Bioblast link«]]
:::: '''Fig. 1''' by Głombik et al (2021): Red arrows indicate e<sup>-</sup> transfer from NADH through CI to Q and from FADH<sub>2</sub> through CII to Q. In oxidation of NADH, one blue H<sup>+</sup> appears in the matrix, which is pumped across the mtIM through CI. In fact, reducing equivalents are not pumped but are consumed in the reduction of FMN and further of UQ to UQH<sub>2</sub>. 2H<sup>+</sup> appear in the matrix in oxidation of FADH<sub>2</sub>. Their fate is not clear (CII is not a H<sup>+</sup> pump).
:::: '''Fig. 1''' by Głombik et al (2021): Red arrows indicate e<sup>-</sup> transfer from NADH through CI to Q and from FADH<sub>2</sub> through CII to Q. In oxidation of NADH, one blue H<sup>+</sup> appears in the matrix, which is pumped across the mtIM through CI. In fact, reducing equivalents are not pumped but are consumed in the reduction of FMN and further of UQ to UQH<sub>2</sub>. 2H<sup>+</sup> appear in the matrix in oxidation of FADH<sub>2</sub>. Their fate is not clear (CII is not a H<sup>+</sup> pump).
<br>
S4.2


:::::: [[File:Granata 2015 Nutr Metab (Lond) CORRECTION.png|400px|link=Granata 2015 Nutr Metab (Lond)]]
:::::: [[File:Granata 2015 Nutr Metab (Lond) CORRECTION.png|400px|link=Granata 2015 Nutr Metab (Lond)]]
:::: '''xx''' Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G (2015) Mitochondria: a new therapeutic target in chronic kidney disease. '''Nutr Metab (Lond)''' 12:49. - [[Granata 2015 Nutr Metab (Lond) |»Bioblast link«]]
:::: '''xx''' Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G (2015) Mitochondria: a new therapeutic target in chronic kidney disease. '''Nutr Metab (Lond)''' 12:49. - [[Granata 2015 Nutr Metab (Lond) |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Kalainayakan 2018 Cell Biosci CORRECTION.png|400px|link=Kalainayakan 2018 Cell Biosci]]
:::::: [[File:Kalainayakan 2018 Cell Biosci CORRECTION.png|400px|link=Kalainayakan 2018 Cell Biosci]]
:::: '''xx''' Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. '''Cell Biosci''' 8:56. - [[Kalainayakan 2018 Cell Biosci |»Bioblast link«]]
:::: '''xx''' Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. '''Cell Biosci''' 8:56. - [[Kalainayakan 2018 Cell Biosci |»Bioblast link«]]
<br>
S4.2


:::::: [[File:King 2009 Biochemistry CORRECTION.png|400px|link=King 2009 Biochemistry]]
:::::: [[File:King 2009 Biochemistry CORRECTION.png|400px|link=King 2009 Biochemistry]]
:::: '''xx''' King MS, Sharpley MS, Hirst J (2009) Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species. '''Biochemistry''' 48:2053-62. - [[King 2009 Biochemistry |»Bioblast link«]]
:::: '''xx''' King MS, Sharpley MS, Hirst J (2009) Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species. '''Biochemistry''' 48:2053-62. - [[King 2009 Biochemistry |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Lee 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Lee 2023 Antioxidants (Basel)]]
:::::: [[File:Lee 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Lee 2023 Antioxidants (Basel)]]
:::: '''xx''' Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. '''Antioxidants (Basel)''' 12:1359. - [[Lee 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. '''Antioxidants (Basel)''' 12:1359. - [[Lee 2023 Antioxidants (Basel) |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Liu 2020 Am J Physiol Heart Circ Physiol]]
:::::: [[File:Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png|400px|link=Liu 2020 Am J Physiol Heart Circ Physiol]]
:::: '''xx''' Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. '''Am J Physiol Heart Circ Physiol''' 319:H89-99. - [[Liu 2020 Am J Physiol Heart Circ Physiol |»Bioblast link«]]
:::: '''xx''' Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. '''Am J Physiol Heart Circ Physiol''' 319:H89-99. - [[Liu 2020 Am J Physiol Heart Circ Physiol |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Pena-Corona 2023 Front Pharmacol CORRECTION.png|400px|link=Pena-Corona 2023 Front Pharmacol]]
:::::: [[File:Pena-Corona 2023 Front Pharmacol CORRECTION.png|400px|link=Pena-Corona 2023 Front Pharmacol]]
:::: '''xx''' Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. '''Front Pharmacol''' 14:1206334. - [[Pena-Corona 2023 Front Pharmacol |»Bioblast link«]]
:::: '''xx''' Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. '''Front Pharmacol''' 14:1206334. - [[Pena-Corona 2023 Front Pharmacol |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|400px|link=Risiglione 2020 Int J Mol Sci]]
:::::: [[File:Risiglione 2020 Int J Mol Sci CORRECTION.png|400px|link=Risiglione 2020 Int J Mol Sci]]
:::: '''xx''' Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. '''Int J Mol Sci''' 21:E7809. - [[Risiglione 2020 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. '''Int J Mol Sci''' 21:E7809. - [[Risiglione 2020 Int J Mol Sci |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Wang 2016 ACS Appl Mater Interfaces CORRECTION.png|400px|link=Wang 2016 ACS Appl Mater Interfaces]]
:::::: [[File:Wang 2016 ACS Appl Mater Interfaces CORRECTION.png|400px|link=Wang 2016 ACS Appl Mater Interfaces]]
:::: '''xx''' Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. '''ACS Appl Mater Interfaces''' 8:24509-16. - [[Wang 2016 ACS Appl Mater Interfaces |»Bioblast link«]]
:::: '''xx''' Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. '''ACS Appl Mater Interfaces''' 8:24509-16. - [[Wang 2016 ACS Appl Mater Interfaces |»Bioblast link«]]
<br>
S4.2


:::::: [[File:Yusoff 2015 InTech CORRECTION.png|400px|link=Yusoff 2015 InTech]]
:::::: [[File:Yusoff 2015 InTech CORRECTION.png|400px|link=Yusoff 2015 InTech]]
:::: '''xx''' Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. '''J Cancer Res Ther''' 11:535-44. - [[Yusoff 2015 J Cancer Res Ther |»Bioblast link«]]
:::: '''xx''' Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. '''J Cancer Res Ther''' 11:535-44. - [[Yusoff 2015 J Cancer Res Ther |»Bioblast link«]]
:::: '''xx''' Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. '''InTech''': http://dx.doi.org/10.5772/58965 - [[Yusoff 2015 InTech |»Bioblast link«]]
:::: '''xx''' Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. '''InTech''': http://dx.doi.org/10.5772/58965 - [[Yusoff 2015 InTech |»Bioblast link«]]
<br>
S4.2




=== NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> ===
'''<big>4.3. NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup></big>'''


:: '''In many cases the oxidation NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> by CI is compared with oxidation by CII of succinate to fumarate, succinate to fumarate + 2H<sup>+</sup>, FADH<sub>2</sub> to FAD, or FADH<sub>2</sub> to FAD + 2H<sup>+</sup>. These combinations underscore the ambiguous nature in these portrayals of the transfer of reducing equivalents. What is the meaning of H<sup>+</sup> in the equation NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> suggested by the following graphical representations of NADH oxidation by CI?'''
:: '''In many cases the oxidation NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> by CI is compared with oxidation by CII of succinate to fumarate, succinate to fumarate + 2H<sup>+</sup>, FADH<sub>2</sub> to FAD, or FADH<sub>2</sub> to FAD + 2H<sup>+</sup>. These combinations underscore the ambiguous nature in these portrayals of the transfer of reducing equivalents. What is the meaning of H<sup>+</sup> in the equation NADH ⟶ NAD<sup>+</sup> + H<sup>+</sup> suggested by the following graphical representations of NADH oxidation by CI?'''
Line 188: Line 188:
:::: '''xx''' Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A (2020) Terminal respiratory oxidases: a targetables vulnerability of mycobacterial bioenergetics? '''Front Cell Infect Microbiol''' 10:589318. - [[Bajeli 2020 Front Cell Infect Microbiol |»Bioblast link«]]
:::: '''xx''' Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A (2020) Terminal respiratory oxidases: a targetables vulnerability of mycobacterial bioenergetics? '''Front Cell Infect Microbiol''' 10:589318. - [[Bajeli 2020 Front Cell Infect Microbiol |»Bioblast link«]]
:::: '''Fig. 1''' by Bejali et al (2020): The meaning of e<sup>-</sup> attached to various enzymes is not clear. For indication of electron transfer, corresponding arrows should be added.
:::: '''Fig. 1''' by Bejali et al (2020): The meaning of e<sup>-</sup> attached to various enzymes is not clear. For indication of electron transfer, corresponding arrows should be added.
<br>
S4.3


:::::: [[File:Bennekou 2020 OECD CORRECTION.png|400px|link=Bennekou 2020 OECD]]
:::::: [[File:Bennekou 2020 OECD CORRECTION.png|400px|link=Bennekou 2020 OECD]]
:::: '''xx''' Bennekou SH, van der Stel W, Carta G, Eakins J, Delp J, Forsby A, Kamp H, Gardner I, Zdradil B, Pastor M, Gomes JC, White A, Steger-Hartman T, Danen EHJ, Leist M, Walker P, Jennings P, van de Water B (2020) Case stuy on the use of integrated approaches to testing and assessment for mitochondrial Complex-III-mediated neurotoxicity of azoxystrobin - read-across to other strobilurins. '''OECD Environment''', Health and Safety Publications Series on Testing and Assessment No. 327. ENV/JM/MONO(2020)23. - [[Bennekou 2020 OECD |»Bioblast link«]]
:::: '''xx''' Bennekou SH, van der Stel W, Carta G, Eakins J, Delp J, Forsby A, Kamp H, Gardner I, Zdradil B, Pastor M, Gomes JC, White A, Steger-Hartman T, Danen EHJ, Leist M, Walker P, Jennings P, van de Water B (2020) Case stuy on the use of integrated approaches to testing and assessment for mitochondrial Complex-III-mediated neurotoxicity of azoxystrobin - read-across to other strobilurins. '''OECD Environment''', Health and Safety Publications Series on Testing and Assessment No. 327. ENV/JM/MONO(2020)23. - [[Bennekou 2020 OECD |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Betiu 2022 Int J Mol Sci CORRECTION.png|400px|link=Betiu 2022 Int J Mol Sci]]
:::::: [[File:Betiu 2022 Int J Mol Sci CORRECTION.png|400px|link=Betiu 2022 Int J Mol Sci]]
:::: '''xx''' Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. '''Int J Mol Sci''' 23:13653. - [[Betiu 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. '''Int J Mol Sci''' 23:13653. - [[Betiu 2022 Int J Mol Sci |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Biner 2018 Chimia (Aarau) CORRECTION.png|400px|link=Biner 2018 Chimia (Aarau)]]
:::::: [[File:Biner 2018 Chimia (Aarau) CORRECTION.png|400px|link=Biner 2018 Chimia (Aarau)]]
:::: '''xx''' Biner O, Schick T, Ganguin AA, von Ballmoos C (2018) Towards a synthetic mitochondrion. '''Chimia (Aarau)''' 72:291-6. - [[Biner 2018 Chimia (Aarau) |»Bioblast link«]]
:::: '''xx''' Biner O, Schick T, Ganguin AA, von Ballmoos C (2018) Towards a synthetic mitochondrion. '''Chimia (Aarau)''' 72:291-6. - [[Biner 2018 Chimia (Aarau) |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Black 2014 Antimicrob Agents Chemother CORRECTION.png|400px|link=Black 2014 Antimicrob Agents Chemother]]
:::::: [[File:Black 2014 Antimicrob Agents Chemother CORRECTION.png|400px|link=Black 2014 Antimicrob Agents Chemother]]
:::: '''xx''' Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD (2014) Energy metabolism and drug efflux in ''Mycobacterium tuberculosis''. '''Antimicrob Agents Chemother''' 58:2491-503. - [[Black 2014 Antimicrob Agents Chemother |»Bioblast link«]]
:::: '''xx''' Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD (2014) Energy metabolism and drug efflux in ''Mycobacterium tuberculosis''. '''Antimicrob Agents Chemother''' 58:2491-503. - [[Black 2014 Antimicrob Agents Chemother |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Branca 2020 Front Cell Dev Biol CORRECTION.png|400px|link=Branca 2020 Front Cell Dev Biol]]
:::::: [[File:Branca 2020 Front Cell Dev Biol CORRECTION.png|400px|link=Branca 2020 Front Cell Dev Biol]]
:::: '''xx''' Branca JJV, Pacini A, Gulisano M, Taddei N, Fiorillo C, Becatti M (2020) Cadmium-induced cytotoxicity: effects on mitochondrial electron transport chain. '''Front Cell Dev Biol''' 8:604377. - [[Branca 2020 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Branca JJV, Pacini A, Gulisano M, Taddei N, Fiorillo C, Becatti M (2020) Cadmium-induced cytotoxicity: effects on mitochondrial electron transport chain. '''Front Cell Dev Biol''' 8:604377. - [[Branca 2020 Front Cell Dev Biol |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Brandt 2013 Angew Chem Int Ed Engl CORRECTION.png|400px|link=Brandt 2013 Angew Chem Int Ed Engl]]
:::::: [[File:Brandt 2013 Angew Chem Int Ed Engl CORRECTION.png|400px|link=Brandt 2013 Angew Chem Int Ed Engl]]
:::: '''##''' Brandt U (2013) Inside view of a giant proton pump. '''Angew Chem Int Ed Engl''' 52:7358-60. - [[Brandt 2013 Angew Chem Int Ed Engl |»Bioblast link«]]
:::: '''##''' Brandt U (2013) Inside view of a giant proton pump. '''Angew Chem Int Ed Engl''' 52:7358-60. - [[Brandt 2013 Angew Chem Int Ed Engl |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Bratic 2013 J Clin Invest CORRECTION.png|400px|link=Bratic 2013 J Clin Invest]]
:::::: [[File:Bratic 2013 J Clin Invest CORRECTION.png|400px|link=Bratic 2013 J Clin Invest]]
:::: '''xx''' Bratic A, Larsson NG (2013) The role of mitochondria in aging. '''J Clin Invest''' 123:951-7. - [[Bratic 2013 J Clin Invest |»Bioblast link«]]
:::: '''xx''' Bratic A, Larsson NG (2013) The role of mitochondria in aging. '''J Clin Invest''' 123:951-7. - [[Bratic 2013 J Clin Invest |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Cerqua 2021 Springer Cham CORRECTION.png|400px|link=Cerqua 2021 Springer, Cham]]
:::::: [[File:Cerqua 2021 Springer Cham CORRECTION.png|400px|link=Cerqua 2021 Springer, Cham]]
:::: '''xx''' Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. '''Springer, Cham''' In: Navas P, Salviati L (eds) Mitochondrial diseases. - [[Cerqua 2021 Springer, Cham |»Bioblast link«]]
:::: '''xx''' Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. '''Springer, Cham''' In: Navas P, Salviati L (eds) Mitochondrial diseases. - [[Cerqua 2021 Springer, Cham |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Curtabbi 2022 IUBMB Life CORRECTION.png|400px|link=Curtabbi 2022 IUBMB Life]]
:::::: [[File:Curtabbi 2022 IUBMB Life CORRECTION.png|400px|link=Curtabbi 2022 IUBMB Life]]
:::: '''xx''' Curtabbi A, Enríquez JA (2022) The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. '''IUBMB Life''' 74:629-44. - [[Curtabbi 2022 IUBMB Life |»Bioblast link«]]
:::: '''xx''' Curtabbi A, Enríquez JA (2022) The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. '''IUBMB Life''' 74:629-44. - [[Curtabbi 2022 IUBMB Life |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Distelmaier 2009 Brain CORRECTION.png|400px|link=Distelmaier 2009 Brain]]
:::::: [[File:Distelmaier 2009 Brain CORRECTION.png|400px|link=Distelmaier 2009 Brain]]
:::: '''xx''' Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. '''Brain''' 132:833-42. - [[Distelmaier 2009 Brain |»Bioblast link«]]
:::: '''xx''' Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. '''Brain''' 132:833-42. - [[Distelmaier 2009 Brain |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|400px|link=Gasmi 2021 Arch Toxicol]]
:::::: [[File:Gasmi 2021 Arch Toxicol CORRECTION.png|400px|link=Gasmi 2021 Arch Toxicol]]
:::: '''xx''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. '''Arch Toxicol''' 95:1161-78. - [[Gasmi 2021 Arch Toxicol |»Bioblast link«]]
:::: '''xx''' Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. '''Arch Toxicol''' 95:1161-78. - [[Gasmi 2021 Arch Toxicol |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Iqbal 2018 Pathogens CORRECTION.png|400px|link=Iqbal 2018 Pathogens]]
:::::: [[File:Iqbal 2018 Pathogens CORRECTION.png|400px|link=Iqbal 2018 Pathogens]]
:::: '''xx''' Iqbal IK, Bajeli S, Akela AK, Kumar A (2018) Bioenergetics of Mycobacterium: an emerging landscape for drug discovery. '''Pathogens''' 7:24. - [[Iqbal 2018 Pathogens |»Bioblast link«]]
:::: '''xx''' Iqbal IK, Bajeli S, Akela AK, Kumar A (2018) Bioenergetics of Mycobacterium: an emerging landscape for drug discovery. '''Pathogens''' 7:24. - [[Iqbal 2018 Pathogens |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Kim 2020 Cells CORRECTION.png|400px|link=Kim 2020 Cells]]
:::::: [[File:Kim 2020 Cells CORRECTION.png|400px|link=Kim 2020 Cells]]
:::: '''xx''' Kim J, Cheong JH (2020) Role of mitochondria-cytoskeleton interactions in the regulation of mitochondrial structure and function in cancer stem cells. '''Cells''' 9:1691. - [[Kim 2020 Cells |»Bioblast link«]]
:::: '''xx''' Kim J, Cheong JH (2020) Role of mitochondria-cytoskeleton interactions in the regulation of mitochondrial structure and function in cancer stem cells. '''Cells''' 9:1691. - [[Kim 2020 Cells |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Koene 2011 J Inherit Metab Dis CORRECTION.png|400px|link=Koene 2011 J Inherit Metab Dis]]
:::::: [[File:Koene 2011 J Inherit Metab Dis CORRECTION.png|400px|link=Koene 2011 J Inherit Metab Dis]]
:::: '''xx''' Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. '''J Inherit Metab Dis''' 34:293-307. - [[Koene 2011 J Inherit Metab Dis |»Bioblast link«]]
:::: '''xx''' Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. '''J Inherit Metab Dis''' 34:293-307. - [[Koene 2011 J Inherit Metab Dis |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Lin 2013 PLoS One CORRECTION.png|400px|link=Lin 2013 PLoS One]]
:::::: [[File:Lin 2013 PLoS One CORRECTION.png|400px|link=Lin 2013 PLoS One]]
:::: '''##''' Lin F, Chen Y, Levine R, Lee K, Yuan Y, Lin XN (2013) Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering. '''PLoS One''' 8:e78595. - [[Lin 2013 PLoS One |»Bioblast link«]]
:::: '''##''' Lin F, Chen Y, Levine R, Lee K, Yuan Y, Lin XN (2013) Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering. '''PLoS One''' 8:e78595. - [[Lin 2013 PLoS One |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Maldonado 2022 Int J Mol Sci CORRECTION.png|400px|link=Maldonado 2022 Int J Mol Sci]]
:::::: [[File:Maldonado 2022 Int J Mol Sci CORRECTION.png|400px|link=Maldonado 2022 Int J Mol Sci]]
:::: '''xx''' Maldonado M, Abe KM, Letts JA (2022) A structural perspective on the RNA editing of plant respiratory Complexes. '''Int J Mol Sci''' 23:684. - [[Maldonado 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Maldonado M, Abe KM, Letts JA (2022) A structural perspective on the RNA editing of plant respiratory Complexes. '''Int J Mol Sci''' 23:684. - [[Maldonado 2022 Int J Mol Sci |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Meyer 2022 New Phytol CORRECTION.png|400px|link=Meyer 2022 New Phytol]]
:::::: [[File:Meyer 2022 New Phytol CORRECTION.png|400px|link=Meyer 2022 New Phytol]]
:::: '''##''' Meyer EH, Letts JA, Maldonado M (2022) Structural insights into the assembly and the function of the plant oxidative phosphorylation system. '''New Phytol''' 235:1315-29. - [[Meyer 2022 New Phytol |»Bioblast link«]]
:::: '''##''' Meyer EH, Letts JA, Maldonado M (2022) Structural insights into the assembly and the function of the plant oxidative phosphorylation system. '''New Phytol''' 235:1315-29. - [[Meyer 2022 New Phytol |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Payen 2019 Cancer Metastasis Rev CORRECTION.png|400px|link=Payen 2019 Cancer Metastasis Rev]]
:::::: [[File:Payen 2019 Cancer Metastasis Rev CORRECTION.png|400px|link=Payen 2019 Cancer Metastasis Rev]]
:::: '''xx''' Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. '''Cancer Metastasis Rev''' 38:189-203. - [[Payen 2019 Cancer Metastasis Rev |»Bioblast link«]]
:::: '''xx''' Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. '''Cancer Metastasis Rev''' 38:189-203. - [[Payen 2019 Cancer Metastasis Rev |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Penjweini 2020 Redox Biol CORRECTION.png|400px|link=Penjweini 2020 Redox Biol]]
:::::: [[File:Penjweini 2020 Redox Biol CORRECTION.png|400px|link=Penjweini 2020 Redox Biol]]
:::: '''##''' Penjweini R, Roarke B, Alspaugh G, Gevorgyan A, Andreoni A, Pasut A, Sackett DL, Knutson JR (2020) Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. '''Redox Biol''' 34:101549. - [[Penjweini 2020 Redox Biol |»Bioblast link«]]
:::: '''##''' Penjweini R, Roarke B, Alspaugh G, Gevorgyan A, Andreoni A, Pasut A, Sackett DL, Knutson JR (2020) Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. '''Redox Biol''' 34:101549. - [[Penjweini 2020 Redox Biol |»Bioblast link«]]
:::: Labelling FAD as 'Free FAD' is incorrect, since the prosthetic group FAD/FADH<sub>2</sub> remains covalently bound to the subunit SDHA of CII in the catalytic cycle.
:::: Labelling FAD as 'Free FAD' is incorrect, since the prosthetic group FAD/FADH<sub>2</sub> remains covalently bound to the subunit SDHA of CII in the catalytic cycle.
<br>
S4.3


:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::::: [[File:Puntel 2013 Toxicol In Vitro CORRECTION.png|400px|link=Puntel 2013 Toxicol In Vitro]]
:::: '''xx''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
:::: '''xx''' Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. '''Toxicol In Vitro''' 27:59-70. - [[Puntel 2013 Toxicol In Vitro |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Sazanov 2015 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Sazanov 2015 Nat Rev Mol Cell Biol]]
:::::: [[File:Sazanov 2015 Nat Rev Mol Cell Biol CORRECTION.png|400px|link=Sazanov 2015 Nat Rev Mol Cell Biol]]
:::: '''xx''' Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. '''Nat Rev Mol Cell Biol''' 16:375-88. - [[Sazanov 2015 Nat Rev Mol Cell Biol |»Bioblast link«]]
:::: '''xx''' Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. '''Nat Rev Mol Cell Biol''' 16:375-88. - [[Sazanov 2015 Nat Rev Mol Cell Biol |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Schon 2018 Science CORRECTION.png|400px|link=Schon 2018 Science]]
:::::: [[File:Schon 2018 Science CORRECTION.png|400px|link=Schon 2018 Science]]
:::: '''xx''' Schon EA (2018) Bioenergetics through thick and thin. '''Science''' 362:1114-5. - [[Schon 2018 Science |»Bioblast link«]]
:::: '''xx''' Schon EA (2018) Bioenergetics through thick and thin. '''Science''' 362:1114-5. - [[Schon 2018 Science |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Srivastava 2016 Clin Transl Med CORRECTION.png|400px|link=Srivastava 2016 Clin Transl Med]]
:::::: [[File:Srivastava 2016 Clin Transl Med CORRECTION.png|400px|link=Srivastava 2016 Clin Transl Med]]
:::: '''ο''' Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. '''Clin Transl Med''' 5:25. - [[Srivastava 2016 Clin Transl Med |»Bioblast link«]]
:::: '''ο''' Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. '''Clin Transl Med''' 5:25. - [[Srivastava 2016 Clin Transl Med |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::::: [[File:Toleikis 2020 Cells CORRECTION.png|400px|link=Toleikis 2020 Cells]]
:::: '''xx''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
:::: '''xx''' Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. '''Cells''' 9:340. - [[Toleikis 2020 Cells |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::::: [[File:Xing 2022 Atlantis Press CORRECTION.png|400px|link=Xing 2022 Atlantis Press]]
:::: '''xx''' Xing Y (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
:::: '''xx''' Xing Y (2022) Is genome instability a significant cause of aging? A review. '''Atlantis Press'''. - [[Xing 2022 Atlantis Press |»Bioblast link«]]
<br>
S4.3


:::::: [[File:Yang 2021 Springer CORRECTION.png|400px|link=Yang 2021 Springer]]
:::::: [[File:Yang 2021 Springer CORRECTION.png|400px|link=Yang 2021 Springer]]
:::: '''##''' Yang Y, Wu Y, Sun XD, Zhang Y (2021) Reactive oxygen species, glucose metabolism, and lipid metabolism. Springer In: Huang C, Zhang Y (eds) Oxidative stress. '''Springer''', Singapore. - [[Yang 2021 Springer |»Bioblast link«]]
:::: '''##''' Yang Y, Wu Y, Sun XD, Zhang Y (2021) Reactive oxygen species, glucose metabolism, and lipid metabolism. Springer In: Huang C, Zhang Y (eds) Oxidative stress. '''Springer''', Singapore. - [[Yang 2021 Springer |»Bioblast link«]]
:::: '''Fig. 9.1''' Arrows are missing from substrates to products, which are required to make this graph meaningful.
:::: '''Fig. 9.1''' Arrows are missing from substrates to products, which are required to make this graph meaningful.
<br>
S4.3




== NADH ⟶ NAD + H<sup>+</sup> (+ e<sup>-</sup>) ==
== Supplement 5. NADH ⟶ NAD + H<sup>+</sup> (+ e<sup>-</sup>) ==


:: '''[[NAD]] is the IUPAC symbol for nicotinamide adenine dinucleotide without implication of its oxidation state, whereas the oxidized form of NAD is NAD<sup>+</sup> and the reduced form of NAD is NADH (in terms of total amount, NAD = NADH + NAD<sup>+</sup>).'''
:: '''[[NAD]] is the IUPAC symbol for nicotinamide adenine dinucleotide without implication of its oxidation state, whereas the oxidized form of NAD is NAD<sup>+</sup> and the reduced form of NAD is NADH (in terms of total amount, NAD = NADH + NAD<sup>+</sup>).'''




=== NADH ⟶ NAD + H<sup>+</sup> + e<sup>-</sup> ===
'''<big>5.1. NADH ⟶ NAD + H<sup>+</sup> + e<sup>-</sup></big>'''


:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::::: [[File:Chen 2022 Int J Mol Sci CORRECTION.png|400px|link=Chen 2022 Int J Mol Sci]]
:::: '''xx''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. '''Int J Mol Sci''' 23:12926. - [[Chen 2022 Int J Mol Sci |»Bioblast link«]]
<br>
S5.1


:::::: [[File:Lima 2021 Nat Metab CORRECTION.png|400px|link=Lima 2021 Nat Metab]]
:::::: [[File:Lima 2021 Nat Metab CORRECTION.png|400px|link=Lima 2021 Nat Metab]]
:::: '''xx''' Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. '''Nat Metab''' 3:1091-108. - [[Lima 2021 Nat Metab |»Bioblast link«]]
:::: '''xx''' Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. '''Nat Metab''' 3:1091-108. - [[Lima 2021 Nat Metab |»Bioblast link«]]
<br>
S5.1


:::::: [[File:Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png|400px|link=Schniertshauer 2023 Curr Issues Mol Biol]]
:::::: [[File:Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png|400px|link=Schniertshauer 2023 Curr Issues Mol Biol]]
:::: '''xx''' Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. '''Curr Issues Mol Biol''' 45:3911-32. - [[Schniertshauer 2023 Curr Issues Mol Biol |»Bioblast link«]]
:::: '''xx''' Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. '''Curr Issues Mol Biol''' 45:3911-32. - [[Schniertshauer 2023 Curr Issues Mol Biol |»Bioblast link«]]
<br>
S5.1




=== NADH ⟶ NAD + H<sup>+</sup> ===
'''<big>5.2. NADH ⟶ NAD + H<sup>+</sup></big>'''


:::::: [[File:Alston 2017 J Pathol CORRECTION.png|400px|link=Alston 2017 J Pathol]]
:::::: [[File:Alston 2017 J Pathol CORRECTION.png|400px|link=Alston 2017 J Pathol]]
:::: '''xx''' Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. '''J Pathol''' 241:236-50. - [[Alston 2017 J Pathol |»Bioblast link«]]
:::: '''xx''' Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. '''J Pathol''' 241:236-50. - [[Alston 2017 J Pathol |»Bioblast link«]]
<br>
S5.2


:::::: [[File:Cuperus 2010 Cell Mol Life Sci CORRECTION.png|400px|link=Cuperus 2010 Cell Mol Life Sci]]
:::::: [[File:Cuperus 2010 Cell Mol Life Sci CORRECTION.png|400px|link=Cuperus 2010 Cell Mol Life Sci]]
:::: '''xx''' Cuperus R, Leen R, Tytgat GA, Caron HN, van Kuilenburg AB (2010) Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. '''Cell Mol Life Sci''' 67:807-16. - [[Cuperus 2010 Cell Mol Life Sci |»Bioblast link«]]
:::: '''xx''' Cuperus R, Leen R, Tytgat GA, Caron HN, van Kuilenburg AB (2010) Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. '''Cell Mol Life Sci''' 67:807-16. - [[Cuperus 2010 Cell Mol Life Sci |»Bioblast link«]]
<br>
S5.2


:::::: [[File:Diaz 2023 Front Mol Biosci CORRECTION.png|400px|link=Diaz 2023 Front Mol Biosci]]
:::::: [[File:Diaz 2023 Front Mol Biosci CORRECTION.png|400px|link=Diaz 2023 Front Mol Biosci]]
:::: '''xx''' Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. '''Front Mol Biosci''' 10:1136975. - [[Diaz 2023 Front Mol Biosci |»Bioblast link«]]
:::: '''xx''' Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. '''Front Mol Biosci''' 10:1136975. - [[Diaz 2023 Front Mol Biosci |»Bioblast link«]]
<br>
S5.2


:::::: [[File:Jezek 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Jezek 2023 Antioxid Redox Signal]]
:::::: [[File:Jezek 2023 Antioxid Redox Signal CORRECTION.png|400px|link=Jezek 2023 Antioxid Redox Signal]]
:::: '''xx''' Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. '''Antioxid Redox Signal'''. https://doi.org/10.1089/ars.2022.0173 - [[Jezek 2023 Antioxid Redox Signal |»Bioblast link«]]
:::: '''xx''' Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. '''Antioxid Redox Signal'''. https://doi.org/10.1089/ars.2022.0173 - [[Jezek 2023 Antioxid Redox Signal |»Bioblast link«]]
<br>
S5.2




== NADH ⟶ NAD<sup>+</sup> + 2H<sup>+</sup> (+ 2e<sup>-</sup>) ==
== Supplement 6. NADH ⟶ NAD<sup>+</sup> + 2H<sup>+</sup> (+ 2e<sup>-</sup>) ==


:: '''A bit of bioenergetic mystery is the origin of the form of the chemical reaction supposedly catalyzed by CI,'''
:: '''A bit of bioenergetic mystery is the origin of the form of the chemical reaction supposedly catalyzed by CI,'''
Line 345: Line 345:




=== NADH ⟶ NAD<sup>+</sup> + 2H<sup>+</sup> + 2e<sup>-</sup> ===
'''<big>6.1. NADH ⟶ NAD<sup>+</sup> + 2H<sup>+</sup> + 2e<sup>-</sup></big>'''


:::::: [[File:Anoar 2021 Front Neurosci CORRECTION.jpg|400px|link=Anoar 2021 Front Neurosci]]
:::::: [[File:Anoar 2021 Front Neurosci CORRECTION.jpg|400px|link=Anoar 2021 Front Neurosci]]
:::: '''xx''' Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from ''Drosophila'' models. '''Front Neurosci''' 15:786076. - [[Anoar 2021 Front Neurosci |»Bioblast link«]]
:::: '''xx''' Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from ''Drosophila'' models. '''Front Neurosci''' 15:786076. - [[Anoar 2021 Front Neurosci |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png|400px|link=Brischigliaro 2021 Biochim Biophys Acta Bioenerg]]
:::::: [[File:Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png|400px|link=Brischigliaro 2021 Biochim Biophys Acta Bioenerg]]
:::: '''xx''' Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. '''Biochim Biophys Acta Bioenerg''' 1862:148335. - [[Brischigliaro 2021 Biochim Biophys Acta Bioenerg |»Bioblast link«]]
:::: '''xx''' Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. '''Biochim Biophys Acta Bioenerg''' 1862:148335. - [[Brischigliaro 2021 Biochim Biophys Acta Bioenerg |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Chavda 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Chavda 2023 Antioxidants (Basel)]]
:::::: [[File:Chavda 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Chavda 2023 Antioxidants (Basel)]]
:::: '''xx''' Chavda V, Lu B (2023) Reverse electron transport at mitochondrial Complex I in ischemic stroke, aging, and age-related diseases. '''Antioxidants (Basel)''' 12:895. - [[Chavda 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Chavda V, Lu B (2023) Reverse electron transport at mitochondrial Complex I in ischemic stroke, aging, and age-related diseases. '''Antioxidants (Basel)''' 12:895. - [[Chavda 2023 Antioxidants (Basel) |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Cojocaru 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Cojocaru 2023 Antioxidants (Basel)]]
:::::: [[File:Cojocaru 2023 Antioxidants (Basel) CORRECTION.png|400px|link=Cojocaru 2023 Antioxidants (Basel)]]
:::: '''xx''' Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. '''Antioxidants (Basel)''' 12:658. - [[Cojocaru 2023 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. '''Antioxidants (Basel)''' 12:658. - [[Cojocaru 2023 Antioxidants (Basel) |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Egan 2023 Physiol Rev CORRECTION.png|400px|link=Egan 2023 Physiol Rev]]
:::::: [[File:Egan 2023 Physiol Rev CORRECTION.png|400px|link=Egan 2023 Physiol Rev]]
:::: '''xx''' Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. '''Physiol Rev''' 103:2057-2170. - [[Egan 2023 Physiol Rev |»Bioblast link«]]
:::: '''xx''' Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. '''Physiol Rev''' 103:2057-2170. - [[Egan 2023 Physiol Rev |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Faria 2023 Pharmaceutics CORRECTION.png|250px|link=Faria 2023 Pharmaceutics]]
:::::: [[File:Faria 2023 Pharmaceutics CORRECTION.png|250px|link=Faria 2023 Pharmaceutics]]
:::: '''xx''' Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. '''Pharmaceutics''' 15:572. - [[Faria 2023 Pharmaceutics |»Bioblast link«]]
:::: '''xx''' Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. '''Pharmaceutics''' 15:572. - [[Faria 2023 Pharmaceutics |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Foo 2022 Trends Microbiol CORRECTION.png|400px|link=Foo 2022 Trends Microbiol]]
:::::: [[File:Foo 2022 Trends Microbiol CORRECTION.png|400px|link=Foo 2022 Trends Microbiol]]
:::: '''xx''' Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. '''Trends Microbiol''' 30:679-92. - [[Foo 2022 Trends Microbiol |»Bioblast link«]]
:::: '''xx''' Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. '''Trends Microbiol''' 30:679-92. - [[Foo 2022 Trends Microbiol |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Gopalakrishnan 2020 Sci Rep CORRECTION.png|400px|link=Gopalakrishnan 2020 Sci Rep]]
:::::: [[File:Gopalakrishnan 2020 Sci Rep CORRECTION.png|400px|link=Gopalakrishnan 2020 Sci Rep]]
:::: '''##''' Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, Abroe B, Connor TB Jr, Carroll J, Huddleston W, Ranji M, Eells JT (2020) Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. '''Sci Rep''' 10:20382. - [[Gopalakrishnan 2020 Sci Rep |»Bioblast link«]]
:::: '''##''' Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, Abroe B, Connor TB Jr, Carroll J, Huddleston W, Ranji M, Eells JT (2020) Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. '''Sci Rep''' 10:20382. - [[Gopalakrishnan 2020 Sci Rep |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::::: [[File:Hidalgo-Gutierrez CORRECTION.png|400px|link=Hidalgo-Gutierrez 2021 Antioxidants (Basel)]]
:::: '''xx''' Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |»Bioblast link«]]
:::: '''xx''' Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. '''Antioxidants (Basel)''' 10:520. - [[Hidalgo-Gutierrez 2021 Antioxidants (Basel) |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Joshi 2022 Biomolecules CORRECTION.png|400px|link=Joshi 2022 Biomolecules]]
:::::: [[File:Joshi 2022 Biomolecules CORRECTION.png|400px|link=Joshi 2022 Biomolecules]]
:::: '''xx''' Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. '''Biomolecules''' 12:880. - [[Joshi 2022 Biomolecules |»Bioblast link«]]
:::: '''xx''' Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. '''Biomolecules''' 12:880. - [[Joshi 2022 Biomolecules |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Keidar 2023 Front Physiol CORRECTION.png|400px|link=Keidar 2023 Front Physiol]]
:::::: [[File:Keidar 2023 Front Physiol CORRECTION.png|400px|link=Keidar 2023 Front Physiol]]
:::: '''xx''' Keidar N, Peretz NK, Yaniv Y (2023) Ca<sup>2+</sup> pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. '''Front Physiol''' 14:1231259. - [[Keidar 2023 Front Physiol |»Bioblast link«]]
:::: '''xx''' Keidar N, Peretz NK, Yaniv Y (2023) Ca<sup>2+</sup> pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. '''Front Physiol''' 14:1231259. - [[Keidar 2023 Front Physiol |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Kugler 2023 J Appl Physiol (1985) CORRECTION.png|400px|link=Kugler 2023 J Appl Physiol (1985)]]
:::::: [[File:Kugler 2023 J Appl Physiol (1985) CORRECTION.png|400px|link=Kugler 2023 J Appl Physiol (1985)]]
:::: '''xx''' Kugler BA, Thyfault JP, McCoin CS (2023) Sexually dimorphic hepatic mitochondrial adaptations to exercise: a mini-review. '''J Appl Physiol (1985)''' 134:685-91. - [[Kugler 2023 J Appl Physiol (1985) |»Bioblast link«]]
:::: '''xx''' Kugler BA, Thyfault JP, McCoin CS (2023) Sexually dimorphic hepatic mitochondrial adaptations to exercise: a mini-review. '''J Appl Physiol (1985)''' 134:685-91. - [[Kugler 2023 J Appl Physiol (1985) |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Lu 2023 Explor Res Hypothesis Med CORRECTION.png|400px|link=Lu 2023 Explor Res Hypothesis Med]]
:::::: [[File:Lu 2023 Explor Res Hypothesis Med CORRECTION.png|400px|link=Lu 2023 Explor Res Hypothesis Med]]
:::: '''xx''' Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. '''Explor Res Hypothesis Med''' 8:280-5. - [[Lu 2023 Explor Res Hypothesis Med |»Bioblast link«]]
:::: '''xx''' Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. '''Explor Res Hypothesis Med''' 8:280-5. - [[Lu 2023 Explor Res Hypothesis Med |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Martell 2023 Nat Commun CORRECTION.png|400px|link=Martell 2023 Nat Commun]]
:::::: [[File:Martell 2023 Nat Commun CORRECTION.png|400px|link=Martell 2023 Nat Commun]]
:::: '''xx''' Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. '''Nat Commun''' 14:2502. - [[Martell 2023 Nat Commun |»Bioblast link«]]
:::: '''xx''' Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. '''Nat Commun''' 14:2502. - [[Martell 2023 Nat Commun |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Musicco 2023 Int J Mol Sci CORRECTION.png|400px|link=Musicco 2023 Int J Mol Sci]]
:::::: [[File:Musicco 2023 Int J Mol Sci CORRECTION.png|400px|link=Musicco 2023 Int J Mol Sci]]
:::: '''xx''' Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. '''Int J Mol Sci''' 24:10420. - [[Musicco 2023 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. '''Int J Mol Sci''' 24:10420. - [[Musicco 2023 Int J Mol Sci |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::::: [[File:Prasuhn 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Prasuhn 2021 Front Cell Dev Biol]]
:::: '''xx''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. '''Front Cell Dev Biol''' 8:615461. - [[Prasuhn 2021 Front Cell Dev Biol |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::::: [[File:Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png|400px|link=Turton 2021 Expert Opinion Orphan Drugs]]
:::: '''xx''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |»Bioblast link«]]
:::: '''xx''' Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. '''Expert Opinion Orphan Drugs''' 9:151-60. - [[Turton 2021 Expert Opinion Orphan Drugs |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Vargas-Mendoza 2021 Life (Basel) CORRECTION.png|400px|link=Vargas-Mendoza 2021 Life (Basel)]]
:::::: [[File:Vargas-Mendoza 2021 Life (Basel) CORRECTION.png|400px|link=Vargas-Mendoza 2021 Life (Basel)]]
:::: '''##''' Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA (2021) Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. '''Life (Basel)''' 11:1269. - [[Vargas-Mendoza 2021 Life (Basel) |»Bioblast link«]]
:::: '''##''' Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA (2021) Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. '''Life (Basel)''' 11:1269. - [[Vargas-Mendoza 2021 Life (Basel) |»Bioblast link«]]
<br>
S6.1


:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
:::::: [[File:Yin 2021 FASEB J CORRECTION.png|400px|link=Yin 2021 FASEB J]]
Line 423: Line 423:




=== NADH ⟶ NAD<sup>+</sup> + 2H<sup>+</sup> + e<sup>-</sup> ===
'''<big>6.2. NADH ⟶ NAD<sup>+</sup> + 2H<sup>+</sup> + e<sup>-</sup></big>'''


:::::: [[File:Gallinat 2022 Int J Mol Sci CORRECTION.png|400px|link=Gallinat 2022 Int J Mol Sci]]
:::::: [[File:Gallinat 2022 Int J Mol Sci CORRECTION.png|400px|link=Gallinat 2022 Int J Mol Sci]]
:::: '''xx''' Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. '''Int J Mol Sci''' 23:2087. - [[Gallinat 2022 Int J Mol Sci |»Bioblast link«]]
:::: '''xx''' Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. '''Int J Mol Sci''' 23:2087. - [[Gallinat 2022 Int J Mol Sci |»Bioblast link«]]
<br>
S6.2


:::::: [[File:Ignatieva 2021 Int J Mol Sci CORRECTION.png|400px|link=Ignatieva 2021 Int J Mol Sci]]
:::::: [[File:Ignatieva 2021 Int J Mol Sci CORRECTION.png|400px|link=Ignatieva 2021 Int J Mol Sci]]
:::: '''##''' Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. '''Int J Mol Sci''' 22:7349. - [[Ignatieva 2021 Int J Mol Sci |»Bioblast link«]]
:::: '''##''' Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. '''Int J Mol Sci''' 22:7349. - [[Ignatieva 2021 Int J Mol Sci |»Bioblast link«]]
<br>
S6.2




=== NADH ⟶ NAD<sup>+</sup> + 2H<sup>+</sup> ===
'''<big>6.3. NADH ⟶ NAD<sup>+</sup> + 2H<sup>+</sup></big>'''


:::::: [[File:Dilliraj 2022 Nutrients CORRECTION.png|400px|link=Dilliraj 2022 Nutrients]]
:::::: [[File:Dilliraj 2022 Nutrients CORRECTION.png|400px|link=Dilliraj 2022 Nutrients]]
:::: '''##''' Dilliraj LN, Schiuma G, Lara D, Strazzabosco G, Clement J, Giovannini P, Trapella C, Narducci M, Rizzo R (2022) The evolution of ketosis: potential impact on clinical conditions. '''Nutrients''' 14:3613. - [[Dilliraj 2022 Nutrients |»Bioblast link«]]
:::: '''##''' Dilliraj LN, Schiuma G, Lara D, Strazzabosco G, Clement J, Giovannini P, Trapella C, Narducci M, Rizzo R (2022) The evolution of ketosis: potential impact on clinical conditions. '''Nutrients''' 14:3613. - [[Dilliraj 2022 Nutrients |»Bioblast link«]]
<br>
S6.3


:::::: [[File:El-Gammal 2022 Pflugers Arch CORRECTION.png|400px|link=El-Gammal 2022 Pflugers Arch]]
:::::: [[File:El-Gammal 2022 Pflugers Arch CORRECTION.png|400px|link=El-Gammal 2022 Pflugers Arch]]
:::: '''xx''' El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. '''Pflugers Arch''' 474:1043-51. - [[El-Gammal 2022 Pflugers Arch |»Bioblast link«]]
:::: '''xx''' El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. '''Pflugers Arch''' 474:1043-51. - [[El-Gammal 2022 Pflugers Arch |»Bioblast link«]]
<br>
S6.3


:::::: [[File:Yu-Wai-Man 2011 Prog Retin Eye Res CORRECTION.png|400px|link=Yu-Wai-Man 2011 Prog Retin Eye Res]]
:::::: [[File:Yu-Wai-Man 2011 Prog Retin Eye Res CORRECTION.png|400px|link=Yu-Wai-Man 2011 Prog Retin Eye Res]]
:::: '''xx''' Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. '''Prog Retin Eye Res''' 30:81-114. - [[Yu-Wai-Man 2011 Prog Retin Eye Res |»Bioblast link«]]
:::: '''xx''' Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. '''Prog Retin Eye Res''' 30:81-114. - [[Yu-Wai-Man 2011 Prog Retin Eye Res |»Bioblast link«]]
S6.3




== NADH ⟶ NAD + 2H<sup>+</sup> + 2e<sup>-</sup> ==
== Supplement 7. NADH ⟶ NAD + (2H<sup>+</sup>) + (2e<sup>-</sup>) ==
 
:: '''[[NAD]] is the IUPAC symbol for nicotinamide adenine dinucleotide without implication of its oxidation state, whereas the oxidized form of NAD is NAD<sup>+</sup> and the reduced form of NAD is NADH (in terms of total amount, NAD = NADH + NAD<sup>+</sup>).'''
 
 
'''<big>7.1. NADH ⟶ NAD + 2H<sup>+</sup> + 2e<sup>-</sup></big>'''


:::::: [[File:Kataoka 2020 Microbiology Monographs CORRECTION.png|400px|link=Kataoka 2020 Microbiology Monographs]]
:::::: [[File:Kataoka 2020 Microbiology Monographs CORRECTION.png|400px|link=Kataoka 2020 Microbiology Monographs]]
:::: '''xx''' Kataoka N, Matsutani M, Matsushita K (2020) Respiratory chain and energy metabolism of Corynebacterium glutamicum. In: Inui M, Toyoda K (eds) Corynebacterium glutamicum. '''Microbiology Monographs''' 23. Springer, Cham. - [[Kataoka 2020 Microbiology Monographs |»Bioblast link«]]
:::: '''xx''' Kataoka N, Matsutani M, Matsushita K (2020) Respiratory chain and energy metabolism of Corynebacterium glutamicum. In: Inui M, Toyoda K (eds) Corynebacterium glutamicum. '''Microbiology Monographs''' 23. Springer, Cham. - [[Kataoka 2020 Microbiology Monographs |»Bioblast link«]]
<br>
S7.1


:::::: [[File:Shields 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Shields 2021 Front Cell Dev Biol]]
:::::: [[File:Shields 2021 Front Cell Dev Biol CORRECTION.png|400px|link=Shields 2021 Front Cell Dev Biol]]
:::: '''xx''' Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. '''Front Cell Dev Biol''' 9:628157. - [[Shields 2021 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. '''Front Cell Dev Biol''' 9:628157. - [[Shields 2021 Front Cell Dev Biol |»Bioblast link«]]
<br>
S7.1


:::::: [[File:Wu 2022 Neuromolecular Med CORRECTION.png|400px|link=Wu 2022 Neuromolecular Med]]
:::::: [[File:Wu 2022 Neuromolecular Med CORRECTION.png|400px|link=Wu 2022 Neuromolecular Med]]
:::: '''xx''' Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. '''Neuromolecular Med''' 24:18-22. - [[Wu 2022 Neuromolecular Med |»Bioblast link«]]
:::: '''xx''' Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. '''Neuromolecular Med''' 24:18-22. - [[Wu 2022 Neuromolecular Med |»Bioblast link«]]
<br>
S7.1
 


== NADH ⟶ NAD (+ 2e<sup>-</sup>) ==


=== NADH ⟶ NAD + 2e<sup>-</sup> ===
'''<big>7.2. NADH ⟶ NAD + 2e<sup>-</sup></big>'''


:::::: [[File:Yang 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Yang 2022 Front Cell Dev Biol]]
:::::: [[File:Yang 2022 Front Cell Dev Biol CORRECTION.png|400px|link=Yang 2022 Front Cell Dev Biol]]
:::: '''xx''' Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. '''Front Cell Dev Biol''' 10:841523. - [[Yang 2022 Front Cell Dev Biol |»Bioblast link«]]
:::: '''xx''' Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. '''Front Cell Dev Biol''' 10:841523. - [[Yang 2022 Front Cell Dev Biol |»Bioblast link«]]
<br>
S7.2




=== NADH ⟶ NAD + e<sup>-</sup> ===
'''<big>7.3. NADH ⟶ NAD + e<sup>-</sup></big>'''


:::::: [[File:Chi 2022 Biomedicines CORRECTION.png|400px|link=Chi 2022 Biomedicines]]
:::::: [[File:Chi 2022 Biomedicines CORRECTION.png|400px|link=Chi 2022 Biomedicines]]
:::: '''xx''' Chi SC, Cheng HC, Wang AG (2022) Leber hereditary optic neuropathy: molecular pathophysiology and updates on gene therapy. '''Biomedicines''' 10:1930. - [[Chi 2022 Biomedicines |»Bioblast link«]]
:::: '''xx''' Chi SC, Cheng HC, Wang AG (2022) Leber hereditary optic neuropathy: molecular pathophysiology and updates on gene therapy. '''Biomedicines''' 10:1930. - [[Chi 2022 Biomedicines |»Bioblast link«]]
<br>
S7.3


:::::: [[File:Geng 2023 Front Physiol CORRECTION.png|400px|link=Geng 2023 Front Physiol]]
:::::: [[File:Geng 2023 Front Physiol CORRECTION.png|400px|link=Geng 2023 Front Physiol]]
:::: '''xx''' Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. '''Front Physiol''' 14:1239643. - [[Geng 2023 Front Physiol |»Bioblast link«]]
:::: '''xx''' Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. '''Front Physiol''' 14:1239643. - [[Geng 2023 Front Physiol |»Bioblast link«]]
<br>
S7.3


:::::: [[File:Simon 2022 Function (Oxf) CORRECTION.png|400px|link=Simon 2022 Function (Oxf)]]
:::::: [[File:Simon 2022 Function (Oxf) CORRECTION.png|400px|link=Simon 2022 Function (Oxf)]]
:::: '''xx''' Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. '''Function (Oxf)''' 3:zqac039. - [[Simon 2022 Function (Oxf) |»Bioblast link«]]
:::: '''xx''' Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. '''Function (Oxf)''' 3:zqac039. - [[Simon 2022 Function (Oxf) |»Bioblast link«]]
<br>
S7.3




=== NADH ⟶ NAD ===
'''<big>7.4. NADH ⟶ NAD</big>'''


:::::: [[File:Beier 2015 FASEB J CORRECTION.png|400px|link=Beier 2015 FASEB J]]
:::::: [[File:Beier 2015 FASEB J CORRECTION.png|400px|link=Beier 2015 FASEB J]]
:::: '''xx''' Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. '''FASEB J''' 29:2315-26. - [[Beier 2015 FASEB J |»Bioblast link«]]
:::: '''xx''' Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. '''FASEB J''' 29:2315-26. - [[Beier 2015 FASEB J |»Bioblast link«]]
<br>
S7.4


:::::: [[File:Howie 2014 Front Immunol CORRECTION.png|400px|link=Howie 2014 Front Immunol]]
:::::: [[File:Howie 2014 Front Immunol CORRECTION.png|400px|link=Howie 2014 Front Immunol]]
:::: '''xx''' Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. '''Front Immunol''' 5:409. - [[Howie 2014 Front Immunol |»Bioblast link«]]
:::: '''xx''' Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. '''Front Immunol''' 5:409. - [[Howie 2014 Front Immunol |»Bioblast link«]]
<br>
S7.4


:::::: [[File:Murray 2009 Genome Med CORRECTION.png|400px|link=Murray 2009 Genome Med]]
:::::: [[File:Murray 2009 Genome Med CORRECTION.png|400px|link=Murray 2009 Genome Med]]
:::: '''xx''' Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. '''Genome Med''' 1:117. - [[Murray 2009 Genome Med |»Bioblast link«]]
:::: '''xx''' Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. '''Genome Med''' 1:117. - [[Murray 2009 Genome Med |»Bioblast link«]]
<br>
S7.4


:::::: [[File:Prasun 2020 J Diabetes Metab Disord CORRECTION.png|400px|link=Prasun 2020 J Diabetes Metab Disord]]
:::::: [[File:Prasun 2020 J Diabetes Metab Disord CORRECTION.png|400px|link=Prasun 2020 J Diabetes Metab Disord]]
:::: '''xx''' Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. '''J Diabetes Metab Disord''' 19:2017-22. - [[Prasun 2020 J Diabetes Metab Disord |»Bioblast link«]]
:::: '''xx''' Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. '''J Diabetes Metab Disord''' 19:2017-22. - [[Prasun 2020 J Diabetes Metab Disord |»Bioblast link«]]
<br>
S7.4


:::::: [[File:Steiner 2017 Int J Biochem Cell Biol CORRECTION.png|400px|link=Steiner 2017 Int J Biochem Cell Biol]]
:::::: [[File:Steiner 2017 Int J Biochem Cell Biol CORRECTION.png|400px|link=Steiner 2017 Int J Biochem Cell Biol]]
:::: '''xx''' Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. '''Int J Biochem Cell Biol''' 89:125-35. - [[Steiner 2017 Int J Biochem Cell Biol |»Bioblast link«]]
:::: '''xx''' Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. '''Int J Biochem Cell Biol''' 89:125-35. - [[Steiner 2017 Int J Biochem Cell Biol |»Bioblast link«]]
<br>
S7.4


:::::: [[File:Tirichen 2021 Front Physiol CORRECTION.png|400px|link=Tirichen 2021 Front Physiol]]
:::::: [[File:Tirichen 2021 Front Physiol CORRECTION.png|400px|link=Tirichen 2021 Front Physiol]]
:::: '''xx''' Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. '''Front Physiol''' 12:627837. - [[Tirichen 2021 Front Physiol |»Bioblast link«]]
:::: '''xx''' Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. '''Front Physiol''' 12:627837. - [[Tirichen 2021 Front Physiol |»Bioblast link«]]
<br>
S7.4




== NADH + H ⟶ NAD<sup>+</sup> + 2e<sup>-</sup> ==
== Supplement 8. NADH + H ⟶ NAD<sup>+</sup> + 2e<sup>-</sup> ==


:::::: [[File:Vartak 2013 Protein Cell CORRECTION.png|400px|link=Vartak 2013 Protein Cell]]
:::::: [[File:Vartak 2013 Protein Cell CORRECTION.png|400px|link=Vartak 2013 Protein Cell]]
:::: '''xx''' Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. '''Protein Cell''' 4:582-90. - [[Vartak 2013 Protein Cell |»Bioblast link«]]
:::: '''xx''' Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. '''Protein Cell''' 4:582-90. - [[Vartak 2013 Protein Cell |»Bioblast link«]]
:::: '''Fig. 1''' of Vartak et al (2013): The misconstrued charge on FAD in FADH<sub>2</sub> → FAD<sup>+</sup> may explain the explicit one-electron (1e) transfer shown for the 2-electron transfer from FADH<sub>2</sub>.
:::: '''Fig. 1''' of Vartak et al (2013): The misconstrued charge on FAD in FADH<sub>2</sub> → FAD<sup>+</sup> may explain the explicit one-electron (1e) transfer shown for the 2-electron transfer from FADH<sub>2</sub>.
<br>
S8




== NADH + H<sup>+</sup> ⟶ NADH  ==
== Supplement 9. NADH + H<sup>+</sup> ⟶ NADH  ==


:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::::: [[File:Cadonic 2016 Mol Neurobiol CORRECTION.png|400px|link=Cadonic 2016 Mol Neurobiol]]
:::: '''xx''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
:::: '''xx''' Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. '''Mol Neurobiol''' 53:6078-90. - [[Cadonic 2016 Mol Neurobiol |»Bioblast link«]]
<br>
S9




== NADH<sub>2</sub> ⟶ NAD<sup>+</sup>  ==
== Supplement 10. NADH<sub>2</sub> ⟶ NAD<sup>+</sup>  ==


:::::: [[File:Papa 2007 Springer CORRECTION.png|400px|link=Papa 2007 Springer]]
:::::: [[File:Papa 2007 Springer CORRECTION.png|400px|link=Papa 2007 Springer]]
:::: '''xx''' Papa S, Petruzzella V, Scacco S (2007) Electron transport. Structure, redox-coupled protonmotive activity, and pathological disorders of respiratory chain Complexes. '''Springer''', Boston, MA. In: Lajtha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology:93–118. - [[Papa 2007 Springer |»Bioblast link«]]
:::: '''xx''' Papa S, Petruzzella V, Scacco S (2007) Electron transport. Structure, redox-coupled protonmotive activity, and pathological disorders of respiratory chain Complexes. '''Springer''', Boston, MA. In: Lajtha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology:93–118. - [[Papa 2007 Springer |»Bioblast link«]]
<br>
S10




== NADH ⟶ for CI, but NAD<sup>+</sup> ⟶ NADH + H<sup>+</sup> for TCA cycle DH  ==
== Supplement 11. NADH ⟶ for CI, but NAD<sup>+</sup> ⟶ NADH + H<sup>+</sup> for TCA cycle DH  ==


:::::: [[File:Dimauro 2009 Biochim Biophys Acta CORRECTION.png|400px|link=Dimauro 2009 Biochim Biophys Acta]]
:::::: [[File:Dimauro 2009 Biochim Biophys Acta CORRECTION.png|400px|link=Dimauro 2009 Biochim Biophys Acta]]
:::: '''xx''' DiMauro S, Rustin P (2009) A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. '''Biochim Biophys Acta''' 1792:1159-67. - [[Dimauro 2009 Biochim Biophys Acta |»Bioblast link«]]
:::: '''xx''' DiMauro S, Rustin P (2009) A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. '''Biochim Biophys Acta''' 1792:1159-67. - [[Dimauro 2009 Biochim Biophys Acta |»Bioblast link«]]
<br>
S11




== Reverse ==
== Supplement 12. Reverse ==


:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|400px|link=Grandoch 2019 Nat Metab]]
:::::: [[File:Grandoch 2019 Nat Metab CORRECTION.png|400px|link=Grandoch 2019 Nat Metab]]
:::: '''xx''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::: '''xx''' Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. '''Nat Metab''' 1:546-59. - [[Grandoch 2019 Nat Metab |»Bioblast link«]]
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when '''FADH<sub>2</sub>''' is shown as the '''''substrate''''' of CII.
<br>
S12


:::::: [[File:Hunt 2018 PLoS Comput Biol CORRECTION.png|400px|link=Hunt 2018 PLoS Comput Biol]]
:::::: [[File:Hunt 2018 PLoS Comput Biol CORRECTION.png|400px|link=Hunt 2018 PLoS Comput Biol]]
:::: '''xx''' Hunt KA, Jennings RM, Inskeep WP, Carlson RP (2018) Multiscale analysis of autotroph-heterotroph interactions in a high-temperature microbial community. '''PLoS Comput Biol''' 14:e1006431. '''Nat Metab''' 1:546-59. - [[Hunt 2018 PLoS Comput Biol |»Bioblast link«]]
:::: '''xx''' Hunt KA, Jennings RM, Inskeep WP, Carlson RP (2018) Multiscale analysis of autotroph-heterotroph interactions in a high-temperature microbial community. '''PLoS Comput Biol''' 14:e1006431. '''Nat Metab''' 1:546-59. - [[Hunt 2018 PLoS Comput Biol |»Bioblast link«]]
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration.
:::::: '''NADH''' is shown as the '''''product''''' of the reaction catalyzed by CI in respiration.
<br>
S12


:::::: [[File:Zhao 2021 Mol Biomed CORRECTION.png|400px|link=Zhao 2021 Mol Biomed]]
:::::: [[File:Zhao 2021 Mol Biomed CORRECTION.png|400px|link=Zhao 2021 Mol Biomed]]
:::: '''xx''' Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. '''Mol Biomed''' 2:5. - [[Zhao 2021 Mol Biomed |»Bioblast link«]]
:::: '''xx''' Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. '''Mol Biomed''' 2:5. - [[Zhao 2021 Mol Biomed |»Bioblast link«]]
<br>
S12




== Cytochrome ''b''<sub>6</sub>''f'' Complex: NADP<sup>+</sup> + H<sup>+</sup> ⟶ NADPH ==
== Supplement 13. Cytochrome ''b''<sub>6</sub>''f'' Complex: NADP<sup>+</sup> + H<sup>+</sup> ⟶ NADPH ==


:::::: [[File:Baniulis 2008 Photochem Photobiol CORRECTION.png|400px|link=Baniulis 2008 Photochem Photobiol]]
:::::: [[File:Baniulis 2008 Photochem Photobiol CORRECTION.png|400px|link=Baniulis 2008 Photochem Photobiol]]
:::: '''xx''' Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008) Structure-function of the cytochrome b6f complex. '''Photochem Photobiol''' 84:1349-58. - [[Baniulis 2008 Photochem Photobiol |»Bioblast link«]]
:::: '''xx''' Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008) Structure-function of the cytochrome b6f complex. '''Photochem Photobiol''' 84:1349-58. - [[Baniulis 2008 Photochem Photobiol |»Bioblast link«]]
<br>
S13


:::::: [[File:Hasan 2012 Phys Chem Chem Phys CORRECTION.png|400px|link=Hasan 2012 Phys Chem Chem Phys]]
:::::: [[File:Hasan 2012 Phys Chem Chem Phys CORRECTION.png|400px|link=Hasan 2012 Phys Chem Chem Phys]]
:::: '''xx''' Hasan SS, Cramer WA (2012) On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. '''Phys Chem Chem Phys''' 14:13853-60. - [[Hasan 2012 Phys Chem Chem Phys |»Bioblast link«]]
:::: '''xx''' Hasan SS, Cramer WA (2012) On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. '''Phys Chem Chem Phys''' 14:13853-60. - [[Hasan 2012 Phys Chem Chem Phys |»Bioblast link«]]
<br>
S13


:::::: [[File:Liguori 2020 Photosynth Res CORRECTION.png|400px|link=Liguori 2020 Photosynth Res]]
:::::: [[File:Liguori 2020 Photosynth Res CORRECTION.png|400px|link=Liguori 2020 Photosynth Res]]
:::: '''xx''' Liguori N, Croce R, Marrink SJ, Thallmair S (2020) Molecular dynamics simulations in photosynthesis. '''Photosynth Res''' 144:273-95. - [[Liguori 2020 Photosynth Res |»Bioblast link«]]
:::: '''xx''' Liguori N, Croce R, Marrink SJ, Thallmair S (2020) Molecular dynamics simulations in photosynthesis. '''Photosynth Res''' 144:273-95. - [[Liguori 2020 Photosynth Res |»Bioblast link«]]
<br>
S13




== Other ==
== Supplement 14. Other ==


:::::: [[File:Michelet 2013 Front Plant Sci CORRECTION.png|400px|link=Michelet 2013 Front Plant Sci]]
:::::: [[File:Michelet 2013 Front Plant Sci CORRECTION.png|400px|link=Michelet 2013 Front Plant Sci]]

Revision as of 11:18, 6 November 2023

Hydrogen ion ambiguities in the electron transfer system

Communicated by Gnaiger E (2023-10-08) last update 2023-11-10
Electron (e-) transfer linked to hydrogen ion (hydron; H+) transfer is a fundamental concept in the field of bioenergetics, critical for understanding redox-coupled energy transformations.
Ambiguity alert H+.png
However, the current literature contains inconsistencies regarding H+ formation on the negative side of bioenergetic membranes, such as the matrix side of the mitochondrial inner membrane, when NADH is oxidized during oxidative phosphorylation (OXPHOS). Ambiguities arise when examining the oxidation of NADH by respiratory Complex I or succinate by Complex II.
Ambiguity alert e-.png
Oxidation of NADH or succinate involves a two-electron transfer of 2{H++e-} to FMN or FAD, respectively. Figures indicating a single electron e- transferred from NADH or succinate lack accuracy.
Ambiguity alert NAD.png
The oxidized NAD+ is distinguished from NAD indicating nicotinamide adenine dinucleotide independent of oxidation state.
NADH + H+ → NAD+ +2{H++e-} is the oxidation half-reaction in this H+-linked electron transfer represented as 2{H++e-} (Gnaiger 2023). Putative H+ formation shown as NADH → NAD+ + H+ conflicts with chemiosmotic coupling stoichiometries between H+ translocation across the coupling membrane and electron transfer to oxygen. Ensuring clarity in this complex field is imperative to tackle the apparent ambiguity crisis and prevent confusion, particularly in light of the increasing number of interdisciplinary publications on bioenergetics concerning diagnostic and clinical applications of OXPHOS analysis.

Supplement 1. The CI substrate is NADH + H+

In mitochondrial preparations, NADH-generating substrates, N, of various dehydrogenases (pyruvate, glutamate, malate, or other ET-pathway competent N-type substrate combinations) are applied to support respiration through Complex I (Gnaiger 2020). Importantly, malate and other N-type substrates are not CI-substrates.
Bottje 2019 Poult Sci CORRECTION.png
xx Bottje WG (2019) Oxidative metabolism and efficiency: the delicate balancing act of mitochondria. Poult Sci 98:4223-30. - »Bioblast link«
Fig. 1 of Bottje (2019): NADH+H+ should be indicated as substrate of CI compared to succinate as substrate of CII. Their oxidation is a 2-electron reaction.

S1


Supplement 2. Electron transfer from CI ⟶ CII ⟶ CIII

Q-junction
The term electron transfer system takes into account the convergent structure of mitochondrial pathways merging from various branched routes at the N-junction and Q-junction (Gnaiger 2020). Unfortunately the term electron transport chain is still used in some branches of the bioenergetic literature. Combined with respiratory Complexes defined in numerical sequence as CI, CII, CIII, and CIV, this led to misrepresenting electron transfer as (NADH, FADH2) → CI → CII → CIII:
Cowan 2019 CNS Neurosci Ther CORRECTION.png
xx Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration. CNS Neurosci Ther 25:825-36. - »Bioblast link«

S2

Huss 2005 J Clin Invest CORRECTION.png
xx Huss JM, Kelly DP (2005) Mitochondrial energy metabolism in heart failure: a question of balance. J Clin Invest 115:547-55. - »Bioblast link«

S2


Supplement 3. NADH + H+ ⟶ NAD+ + (2)H+ (+2e-)

It is important to distinguish in the oxidation of NADH the H+ that is consumed as a substrate (on the left side of the equation) from the 2H+ that are donated in the redox reaction of H+-linked electron transfer to the reductant FMN:
NADH + H+ ⟶ NAD+ + 2{H++e-}
In H+-linked electron transfer, the 2e- should be matched with 2H+.
Mathur 2017 Front Cell Neurosci CORRECTION.png
xx Mathur D, Riffo-Campos AL, Castillo J, Haines JD, Vidaurre OG, Zhang F, Coret-Ferrer F, Casaccia P, Casanova B, Lopez-Rodas G (2017) Bioenergetic failure in rat oligodendrocyte progenitor cells treated with cerebrospinal fluid derived from multiple sclerosis poatients. Front Cell Neurosci 11:209. - »Bioblast link«
Fig. 5 of Mathur et al (2017): H+ is consumed in the redox chemical (scalar) reaction of H+-linked electron transfer catalyzed by CI, NADH + H+ → NAD+ + 2H+. This same H+ is shown to be transported in the vectorial H+ translocation from the matrix side across the mtIM (H+neg → H+pos). The scalar and vectorial transformations must be distinguished. When the path is shown of the single electron (instead of 2{H++e-}) from NADH to ubiquinone, then it is particularly confusing when the 2H+ in the H+-linked electron transfer are indicated as remaining in the matrix.

S3

Rosca 2012 Diabetes CORRECTION.png
xx Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL (2012) Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes 61:2074-83. - »Bioblast link«
Fig. 5 of Rosca et al (2012): Oxidation of succinate to fumarate reduces ubiquinone to ubiquinol through oxidation of FAD to FADH2 and further redox steps in CII. Likewise, oxidation of NADH + H+ to NAD+ reduces ubiquinone to ubiquinol through oxidation of FMN to FMNH2 and further redox steps in CI. This reduction of UQ to UQH2 effectively consumes the 2H+ together with 2e-. Hence, the 2H+ should not be shown to be formed in the matrix. Indication of H+-linked electron transfer as 2{H++e-} eliminates the ambiguity.

S3

Nakane 2020 J Intensive Care CORRECTION.png
## Nakane M (2020) Biological effects of the oxygen molecule in critically ill patients. J Intensive Care 8:95. - »Bioblast link«
## Copied with permission from: Hall J (2016) Guyton and Hall Textbook of Medical Physiology. 13. Elsevier, Philadelphia.

S3

Supplement 4. NADH ⟶ NAD+ + H+ (+ 2e-)

In the chemical equation for oxidation of NADH + H+ by CI,
NADH + H+ → NAD+ + 2{H++e-}
H+ linked to electron transfer is indicated as 2{H++e-} on the product side, in contrast to H+ defined as a substrate in the chemical reaction (Gnaiger 2023). This formal distinction avoids an ambiguity arising from writing this equation as (see above),
NADH + H+ → NAD+ + 2H+
Then H+ on both sides of the equation may be considered to cancel, which provides a possible explanation for the frequent occurrence of the erroneous rearrangement as
NADH → NAD+ + H+


4.1. NADH ⟶ NAD+ + H+ + 2e-

Electron flow from NADH to FMN in CI proceeds as a 2e- transfer. The 2e- are never free floating in the matrix but belong to the arrow reaching ubiquinone UQ. 2-electron transfer is linked to 2H+ transfer, hence the meaning of the single H+ — written on the right side of the equation — is elusive.
Ahmad 2022 StatPearls CORRECTION.png
xx Ahmad M, Wolberg A, Kahwaji CI (2022) Biochemistry, electron transport chain. StatPearls Publishing StatPearls [Internet], Treasure Island (FL). - »Bioblast link«

S4.1

Avram 2021 Int J Mol Sci CORRECTION.png
xx Avram VF, Chamkha I, Åsander-Frostner E, Ehinger JK, Timar RZ, Hansson MJ, Muntean DM, Elmér E (2021) Cell-permeable succinate rescues mitochondrial respiration in cellular models of statin toxicity. Int J Mol Sci 22:424. - »Bioblast link«

S4.1

Esterhazy 2008 Biochemistry CORRECTION.png
xx Esterházy D, King MS, Yakovlev G, Hirst J (2008) Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 47:3964-71. - »Bioblast link«

S4.1

Friedman 2021 Quantum Reports CORRECTION.png
xx Friedman J, Mourokh L, Vittadello M (2021) Mechanism of proton pumping in Complex I of the mitochondrial respiratory chain. Quantum Reports 3:425-34. - »Bioblast link«

S4.1

Hummer 2016 Biochim Biophys Acta CORRECTION.png
xx Hummer G, Wikström M (2016) Molecular simulation and modeling of complex I. Biochim Biophys Acta 1857:915-21. - »Bioblast link«

S4.1

Luptak 2023 Antioxidants (Basel) CORRECTION.png
xx Ľupták M, Fišar Z, Hroudová J (2023) Different effects of SSRIs, Bupropion, and Trazodone on mitochondrial functions and monoamine oxidase isoform activity. Antioxidants (Basel) 12:1208. - »Bioblast link«

S4.1

Martin 2017 Sci Rep CORRECTION.png
xx Martin DR, Matyushov DV (2017) Electron-transfer chain in respiratory complex I. Sci Rep 7:5495. - »Bioblast link«

S4.1

Rose 2019 Adis CORRECTION.png
xx Rose S, Bennuri SC (2019) Mitochondrial metabolism. In: Frye R, Berk M (eds) The therapeutic use of N-acetylcysteine (NAC) in medicine. Adis, Singapore. - »Bioblast link«

S4.1

Sharpley 2006 J Biol Chem CORRECTION.png
xx Sharpley MS, Hirst J (2006) The inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by Zn2+. J Biol Chem 281:34803-9. - »Bioblast link«

S4.1

Tseng 2022 Cells CORRECTION.png
xx Tseng W-W, Wei A-C (2022) Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. Cells 11:4020. - »Bioblast link«

S4.1

Vekshin 2020 Springer Cham 3.2 CORRECTION.png
τ Vekshin N (2020) Biophysics of mitochondria. Springer Cham: 197 pp. - »Bioblast link«

S4.1

Wikstroem 2012 Proc Natl Acad Sci U S A CORRECTION.png
xx Wikström M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A 109:4431-6. - »Bioblast link«

S4.1

Yakovlev 2007 Biochemistry CORRECTION.png
xx Yakovlev G, Hirst J (2007) Transhydrogenation reactions catalyzed by mitochondrial NADH-ubiquinone oxidoreductase (Complex I). Biochemistry 46:14250-8. - »Bioblast link«

S4.1

Zu 2003 J Am Chem Soc CORRECTION.png
xx Zu Y, Shannon RJ, Hirst J (2003) Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Am Chem Soc 125:6020-1. - »Bioblast link«

S4.1


4.2. NADH ⟶ NAD+ + H+ + e-

The 2-electron transfer from NADH to CI is not well depicted in graphical representations suggesting the equation NADH ⟶ NAD+ + H+ + e-.
Brzezinski 2021 Chem Rev CORRECTION.png
xx Brzezinski P, Moe A, Ädelroth P (2021) Structure and mechanism of respiratory III-IV supercomplexes in bioenergetic membranes. Chem Rev 121:9644-73. - »Bioblast link«

S4.2

Burgin 2020 FEBS Lett CORRECTION.png
xx Burgin HJ, McKenzie M (2020) Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. FEBS Lett 594:590-610. - »Bioblast link«

S4.2

DeBalsi 2017 Ageing Res Rev CORRECTION.png
xx DeBalsi KL, Hoff KE, Copeland WC (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev 33:89-104. - »Bioblast link«

S4.2

Dhingra 2015 Cell Death Dis CORRECTION.png
xx Dhingra R, Kirshenbaum LA (2015) Succinate dehydrogenase/complex II activity obligatorily links mitochondrial reserve respiratory capacity to cell survival in cardiac myocytes. Cell Death Dis 6:e1956. - »Bioblast link«

S4.2

Glombik 2021 Cells CORRECTION.png
xx Głombik K, Detka J, Budziszewska B (2021) Hormonal regulation of oxidative phosphorylation in the brain in health and disease. Cells 10:2937. - »Bioblast link«
Fig. 1 by Głombik et al (2021): Red arrows indicate e- transfer from NADH through CI to Q and from FADH2 through CII to Q. In oxidation of NADH, one blue H+ appears in the matrix, which is pumped across the mtIM through CI. In fact, reducing equivalents are not pumped but are consumed in the reduction of FMN and further of UQ to UQH2. 2H+ appear in the matrix in oxidation of FADH2. Their fate is not clear (CII is not a H+ pump).

S4.2

Granata 2015 Nutr Metab (Lond) CORRECTION.png
xx Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G (2015) Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond) 12:49. - »Bioblast link«

S4.2

Kalainayakan 2018 Cell Biosci CORRECTION.png
xx Kalainayakan SP, FitzGerald KE, Konduri PC, Vidal C, Zhang L (2018) Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci 8:56. - »Bioblast link«

S4.2

King 2009 Biochemistry CORRECTION.png
xx King MS, Sharpley MS, Hirst J (2009) Reduction of hydrophilic ubiquinones by the flavin in mitochondrial NADH:ubiquinone oxidoreductase (Complex I) and production of reactive oxygen species. Biochemistry 48:2053-62. - »Bioblast link«

S4.2

Lee 2023 Antioxidants (Basel) CORRECTION.png
xx Lee WE, Genetzakis E, Figtree GA (2023) Novel strategies in the early detection and treatment of endothelial cell-specific mitochondrial dysfunction in coronary artery disease. Antioxidants (Basel) 12:1359. - »Bioblast link«

S4.2

Liu 2020 Am J Physiol Heart Circ Physiol CORRECTION.png
xx Liu R, Jagannathan R, Sun L, Li F, Yang P, Lee J, Negi V, Perez-Garcia EM, Shiva S, Yechoor VK, Moulik M (2020) Tead1 is essential for mitochondrial function in cardiomyocytes. Am J Physiol Heart Circ Physiol 319:H89-99. - »Bioblast link«

S4.2

Pena-Corona 2023 Front Pharmacol CORRECTION.png
xx Peña-Corona SI, Hernández-Parra H, Bernal-Chávez SA, Mendoza-Muñoz N, Romero-Montero A, Del Prado-Audelo ML, Cortés H, Ateşşahin DA, Habtemariam S, Almarhoon ZM, Abdull Razis AF, Modu B, Sharifi-Rad J, Leyva-Gómez G (2023) Neopeltolide and its synthetic derivatives: a promising new class of anticancer agents. Front Pharmacol 14:1206334. - »Bioblast link«

S4.2

Risiglione 2020 Int J Mol Sci CORRECTION.png
xx Risiglione P, Leggio L, Cubisino SAM, Reina S, Paternò G, Marchetti B, Magrì A, Iraci N, Messina A (2020) High-resolution respirometry reveals MPP+ mitochondrial toxicity mechanism in a cellular model of parkinson's disease. Int J Mol Sci 21:E7809. - »Bioblast link«

S4.2

Wang 2016 ACS Appl Mater Interfaces CORRECTION.png
xx Wang G, Feng H, Gao A, Hao Q, Jin W, Peng X, Li W, Wu G, Chu PK (2016) Extracellular electron transfer from aerobic bacteria to Au-loaded TiO2 semiconductor without light: a new bacteria-killing mechanism other than localized surface plasmon resonance or microbial fuel cells. ACS Appl Mater Interfaces 8:24509-16. - »Bioblast link«

S4.2

Yusoff 2015 InTech CORRECTION.png
xx Yusoff AAM (2015) Role of mitochondrial DNA mutations in brain tumors: A mini-review. J Cancer Res Ther 11:535-44. - »Bioblast link«
xx Yusoff AAM, Ahmad F, Idris Z, Jaafar H, Abdullah JM (2015) Understanding mitochondrial DNA in brain tumorigenesis. In: Lichtor T, ed. Molecular considerations and evolving surgical management issues in the treatment of patients with a brain tumor. InTech: http://dx.doi.org/10.5772/58965 - »Bioblast link«

S4.2


4.3. NADH ⟶ NAD+ + H+

In many cases the oxidation NADH ⟶ NAD+ + H+ by CI is compared with oxidation by CII of succinate to fumarate, succinate to fumarate + 2H+, FADH2 to FAD, or FADH2 to FAD + 2H+. These combinations underscore the ambiguous nature in these portrayals of the transfer of reducing equivalents. What is the meaning of H+ in the equation NADH ⟶ NAD+ + H+ suggested by the following graphical representations of NADH oxidation by CI?
Bajeli 2020 Front Cell Infect Microbiol CORRECTION.png
xx Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A (2020) Terminal respiratory oxidases: a targetables vulnerability of mycobacterial bioenergetics? Front Cell Infect Microbiol 10:589318. - »Bioblast link«
Fig. 1 by Bejali et al (2020): The meaning of e- attached to various enzymes is not clear. For indication of electron transfer, corresponding arrows should be added.

S4.3

Bennekou 2020 OECD CORRECTION.png
xx Bennekou SH, van der Stel W, Carta G, Eakins J, Delp J, Forsby A, Kamp H, Gardner I, Zdradil B, Pastor M, Gomes JC, White A, Steger-Hartman T, Danen EHJ, Leist M, Walker P, Jennings P, van de Water B (2020) Case stuy on the use of integrated approaches to testing and assessment for mitochondrial Complex-III-mediated neurotoxicity of azoxystrobin - read-across to other strobilurins. OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 327. ENV/JM/MONO(2020)23. - »Bioblast link«

S4.3

Betiu 2022 Int J Mol Sci CORRECTION.png
xx Bețiu AM, Noveanu L, Hâncu IM, Lascu A, Petrescu L, Maack C, Elmér E, Muntean DM (2022) Mitochondrial effects of common cardiovascular medications: the good, the bad and the mixed. Int J Mol Sci 23:13653. - »Bioblast link«

S4.3

Biner 2018 Chimia (Aarau) CORRECTION.png
xx Biner O, Schick T, Ganguin AA, von Ballmoos C (2018) Towards a synthetic mitochondrion. Chimia (Aarau) 72:291-6. - »Bioblast link«

S4.3

Black 2014 Antimicrob Agents Chemother CORRECTION.png
xx Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD (2014) Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58:2491-503. - »Bioblast link«

S4.3

Branca 2020 Front Cell Dev Biol CORRECTION.png
xx Branca JJV, Pacini A, Gulisano M, Taddei N, Fiorillo C, Becatti M (2020) Cadmium-induced cytotoxicity: effects on mitochondrial electron transport chain. Front Cell Dev Biol 8:604377. - »Bioblast link«

S4.3

Brandt 2013 Angew Chem Int Ed Engl CORRECTION.png
## Brandt U (2013) Inside view of a giant proton pump. Angew Chem Int Ed Engl 52:7358-60. - »Bioblast link«

S4.3

Bratic 2013 J Clin Invest CORRECTION.png
xx Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123:951-7. - »Bioblast link«

S4.3

Cerqua 2021 Springer Cham CORRECTION.png
xx Cerqua C, Buson L, Trevisson E (2021) Mutations in assembly dactors required for the biogenesis of mitochondrial respiratory chain. Springer, Cham In: Navas P, Salviati L (eds) Mitochondrial diseases. - »Bioblast link«

S4.3

Curtabbi 2022 IUBMB Life CORRECTION.png
xx Curtabbi A, Enríquez JA (2022) The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life 74:629-44. - »Bioblast link«

S4.3

Distelmaier 2009 Brain CORRECTION.png
xx Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132:833-42. - »Bioblast link«

S4.3

Gasmi 2021 Arch Toxicol CORRECTION.png
xx Gasmi A, Peana M, Arshad M, Butnariu M, Menzel A, Bjørklund G (2021) Krebs cycle: activators, inhibitors and their roles in the modulation of carcinogenesis. Arch Toxicol 95:1161-78. - »Bioblast link«

S4.3

Iqbal 2018 Pathogens CORRECTION.png
xx Iqbal IK, Bajeli S, Akela AK, Kumar A (2018) Bioenergetics of Mycobacterium: an emerging landscape for drug discovery. Pathogens 7:24. - »Bioblast link«

S4.3

Kim 2020 Cells CORRECTION.png
xx Kim J, Cheong JH (2020) Role of mitochondria-cytoskeleton interactions in the regulation of mitochondrial structure and function in cancer stem cells. Cells 9:1691. - »Bioblast link«

S4.3

Koene 2011 J Inherit Metab Dis CORRECTION.png
xx Koene S, Willems PH, Roestenberg P, Koopman WJ, Smeitink JA (2011) Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency. J Inherit Metab Dis 34:293-307. - »Bioblast link«

S4.3

Lin 2013 PLoS One CORRECTION.png
## Lin F, Chen Y, Levine R, Lee K, Yuan Y, Lin XN (2013) Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering. PLoS One 8:e78595. - »Bioblast link«

S4.3

Maldonado 2022 Int J Mol Sci CORRECTION.png
xx Maldonado M, Abe KM, Letts JA (2022) A structural perspective on the RNA editing of plant respiratory Complexes. Int J Mol Sci 23:684. - »Bioblast link«

S4.3

Meyer 2022 New Phytol CORRECTION.png
## Meyer EH, Letts JA, Maldonado M (2022) Structural insights into the assembly and the function of the plant oxidative phosphorylation system. New Phytol 235:1315-29. - »Bioblast link«

S4.3

Payen 2019 Cancer Metastasis Rev CORRECTION.png
xx Payen VL, Zampieri LX, Porporato PE, Sonveaux P (2019) Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 38:189-203. - »Bioblast link«

S4.3

Penjweini 2020 Redox Biol CORRECTION.png
## Penjweini R, Roarke B, Alspaugh G, Gevorgyan A, Andreoni A, Pasut A, Sackett DL, Knutson JR (2020) Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism. Redox Biol 34:101549. - »Bioblast link«
Labelling FAD as 'Free FAD' is incorrect, since the prosthetic group FAD/FADH2 remains covalently bound to the subunit SDHA of CII in the catalytic cycle.

S4.3

Puntel 2013 Toxicol In Vitro CORRECTION.png
xx Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. Toxicol In Vitro 27:59-70. - »Bioblast link«

S4.3

Sazanov 2015 Nat Rev Mol Cell Biol CORRECTION.png
xx Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375-88. - »Bioblast link«

S4.3

Schon 2018 Science CORRECTION.png
xx Schon EA (2018) Bioenergetics through thick and thin. Science 362:1114-5. - »Bioblast link«

S4.3

Srivastava 2016 Clin Transl Med CORRECTION.png
ο Srivastava S (2016) Emerging therapeutic roles for NAD(+) metabolism in mitochondrial and age-related disorders. Clin Transl Med 5:25. - »Bioblast link«

S4.3

Toleikis 2020 Cells CORRECTION.png
xx Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM (2020) Fatty acid oxidation and mitochondrial morphology changes as key modulators of the affinity for ADP in rat heart mitochondria. Cells 9:340. - »Bioblast link«

S4.3

Xing 2022 Atlantis Press CORRECTION.png
xx Xing Y (2022) Is genome instability a significant cause of aging? A review. Atlantis Press. - »Bioblast link«

S4.3

Yang 2021 Springer CORRECTION.png
## Yang Y, Wu Y, Sun XD, Zhang Y (2021) Reactive oxygen species, glucose metabolism, and lipid metabolism. Springer In: Huang C, Zhang Y (eds) Oxidative stress. Springer, Singapore. - »Bioblast link«
Fig. 9.1 Arrows are missing from substrates to products, which are required to make this graph meaningful.

S4.3


Supplement 5. NADH ⟶ NAD + H+ (+ e-)

NAD is the IUPAC symbol for nicotinamide adenine dinucleotide without implication of its oxidation state, whereas the oxidized form of NAD is NAD+ and the reduced form of NAD is NADH (in terms of total amount, NAD = NADH + NAD+).


5.1. NADH ⟶ NAD + H+ + e-

Chen 2022 Int J Mol Sci CORRECTION.png
xx Chen TH, Koh KY, Lin KM, Chou CK (2022) Mitochondrial dysfunction as an underlying cause of skeletal muscle disorders. Int J Mol Sci 23:12926. - »Bioblast link«

S5.1

Lima 2021 Nat Metab CORRECTION.png
xx Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA (2021) Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat Metab 3:1091-108. - »Bioblast link«

S5.1

Schniertshauer 2023 Curr Issues Mol Biol CORRECTION.jpg.png
xx Schniertshauer D, Wespel S, Bergemann J (2023) Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. Curr Issues Mol Biol 45:3911-32. - »Bioblast link«

S5.1


5.2. NADH ⟶ NAD + H+

Alston 2017 J Pathol CORRECTION.png
xx Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. J Pathol 241:236-50. - »Bioblast link«

S5.2

Cuperus 2010 Cell Mol Life Sci CORRECTION.png
xx Cuperus R, Leen R, Tytgat GA, Caron HN, van Kuilenburg AB (2010) Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. Cell Mol Life Sci 67:807-16. - »Bioblast link«

S5.2

Diaz 2023 Front Mol Biosci CORRECTION.png
xx Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E (2023) Elevated LDL-C, high blood pressure, and low peak V˙O2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. Front Mol Biosci 10:1136975. - »Bioblast link«

S5.2

Jezek 2023 Antioxid Redox Signal CORRECTION.png
xx Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A (2023) Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. Antioxid Redox Signal. https://doi.org/10.1089/ars.2022.0173 - »Bioblast link«

S5.2


Supplement 6. NADH ⟶ NAD+ + 2H+ (+ 2e-)

A bit of bioenergetic mystery is the origin of the form of the chemical reaction supposedly catalyzed by CI,
NADH → NAD+ + 2H+
If H+-linked electron transfer would be indicated, then the 2H+ should be directed together with 2e- to the prosthetic group FMN bound to CI instead of being pushed into the matrix space, and a H+ is missing on the substrate side. The unambiguous form of the equation is (Gnaiger 2023),
NADH + H+ → NAD+ + 2{H++e-}


6.1. NADH ⟶ NAD+ + 2H+ + 2e-

Anoar 2021 Front Neurosci CORRECTION.jpg
xx Anoar S, Woodling NS, Niccoli T (2021) Mitochondria dysfunction in frontotemporal dementia/amyotrophic lateral sclerosis: lessons from Drosophila models. Front Neurosci 15:786076. - »Bioblast link«

S6.1

Brischigliaro 2021 Biochim Biophys Acta Bioenerg CORRECTION.png
xx Brischigliaro M, Zeviani M (2021) Cytochrome c oxidase deficiency. Biochim Biophys Acta Bioenerg 1862:148335. - »Bioblast link«

S6.1

Chavda 2023 Antioxidants (Basel) CORRECTION.png
xx Chavda V, Lu B (2023) Reverse electron transport at mitochondrial Complex I in ischemic stroke, aging, and age-related diseases. Antioxidants (Basel) 12:895. - »Bioblast link«

S6.1

Cojocaru 2023 Antioxidants (Basel) CORRECTION.png
xx Cojocaru KA, Luchian I, Goriuc A, Antoci LM, Ciobanu CG, Popescu R, Vlad CE, Blaj M, Foia LG (2023) Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants (Basel) 12:658. - »Bioblast link«

S6.1

Egan 2023 Physiol Rev CORRECTION.png
xx Egan B, Sharples AP (2023) Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiol Rev 103:2057-2170. - »Bioblast link«

S6.1

Faria 2023 Pharmaceutics CORRECTION.png
xx Faria R, Boisguérin P, Sousa Â, Costa D (2023) Delivery systems for mitochondrial gene therapy: a review. Pharmaceutics 15:572. - »Bioblast link«

S6.1

Foo 2022 Trends Microbiol CORRECTION.png
xx Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol 30:679-92. - »Bioblast link«

S6.1

Gopalakrishnan 2020 Sci Rep CORRECTION.png
## Gopalakrishnan S, Mehrvar S, Maleki S, Schmitt H, Summerfelt P, Dubis AM, Abroe B, Connor TB Jr, Carroll J, Huddleston W, Ranji M, Eells JT (2020) Photobiomodulation preserves mitochondrial redox state and is retinoprotective in a rodent model of retinitis pigmentosa. Sci Rep 10:20382. - »Bioblast link«

S6.1

Hidalgo-Gutierrez CORRECTION.png
xx Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC (2021) Metabolic targets of coenzyme Q10 in mitochondria. Antioxidants (Basel) 10:520. - »Bioblast link«

S6.1

Joshi 2022 Biomolecules CORRECTION.png
xx Joshi A, Ito T, Picard D, Neckers L (2022) The mitochondrial HSP90 paralog TRAP1: structural dynamics, interactome, role in metabolic regulation, and inhibitors. Biomolecules 12:880. - »Bioblast link«

S6.1

Keidar 2023 Front Physiol CORRECTION.png
xx Keidar N, Peretz NK, Yaniv Y (2023) Ca2+ pushes and pulls energetics to maintain ATP balance in atrial cells: computational insights. Front Physiol 14:1231259. - »Bioblast link«

S6.1

Kugler 2023 J Appl Physiol (1985) CORRECTION.png
xx Kugler BA, Thyfault JP, McCoin CS (2023) Sexually dimorphic hepatic mitochondrial adaptations to exercise: a mini-review. J Appl Physiol (1985) 134:685-91. - »Bioblast link«

S6.1

Lu 2023 Explor Res Hypothesis Med CORRECTION.png
xx Lu F (2023) Hypothetical hydrogenase activity of human mitochondrial Complex I and its role in preventing cancer transformation. Explor Res Hypothesis Med 8:280-5. - »Bioblast link«

S6.1

Martell 2023 Nat Commun CORRECTION.png
xx Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T (2023) Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat Commun 14:2502. - »Bioblast link«

S6.1

Musicco 2023 Int J Mol Sci CORRECTION.png
xx Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A (2023) Mitochondria deregulations in cancer offer several potential targets of therapeutic interventions. Int J Mol Sci 24:10420. - »Bioblast link«

S6.1

Prasuhn 2021 Front Cell Dev Biol CORRECTION.png
xx Prasuhn J, Davis RL, Kumar KR (2021) Targeting mitochondrial impairment in Parkinson's disease: challenges and opportunities. Front Cell Dev Biol 8:615461. - »Bioblast link«

S6.1

Turton 2021 Expert Opinion Orphan Drugs CORRECTION.png
xx Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA (2021) Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opinion Orphan Drugs 9:151-60. - »Bioblast link«

S6.1

Vargas-Mendoza 2021 Life (Basel) CORRECTION.png
## Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA (2021) Oxidative stress, mitochondrial function and adaptation to exercise: new perspectives in nutrition. Life (Basel) 11:1269. - »Bioblast link«

S6.1

Yin 2021 FASEB J CORRECTION.png
xx Yin M, O'Neill LAJ (2021) The role of the electron transport chain in immunity. FASEB J 35:e21974. - »Bioblast link«


6.2. NADH ⟶ NAD+ + 2H+ + e-

Gallinat 2022 Int J Mol Sci CORRECTION.png
xx Gallinat A, Vilahur G, Padró T, Badimon L (2022) Network-assisted systems biology analysis of the mitochondrial proteome in a pre-clinical model of ischemia, revascularization and post-conditioning. Int J Mol Sci 23:2087. - »Bioblast link«

S6.2

Ignatieva 2021 Int J Mol Sci CORRECTION.png
## Ignatieva E, Smolina N, Kostareva A, Dmitrieva R (2021) Skeletal muscle mitochondria dysfunction in genetic neuromuscular disorders with cardiac phenotype. Int J Mol Sci 22:7349. - »Bioblast link«

S6.2


6.3. NADH ⟶ NAD+ + 2H+

Dilliraj 2022 Nutrients CORRECTION.png
## Dilliraj LN, Schiuma G, Lara D, Strazzabosco G, Clement J, Giovannini P, Trapella C, Narducci M, Rizzo R (2022) The evolution of ketosis: potential impact on clinical conditions. Nutrients 14:3613. - »Bioblast link«

S6.3

El-Gammal 2022 Pflugers Arch CORRECTION.png
xx El-Gammal Z, Nasr MA, Elmehrath AO, Salah RA, Saad SM, El-Badri N (2022) Regulation of mitochondrial temperature in health and disease. Pflugers Arch 474:1043-51. - »Bioblast link«

S6.3

Yu-Wai-Man 2011 Prog Retin Eye Res CORRECTION.png
xx Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies - disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30:81-114. - »Bioblast link«

S6.3


Supplement 7. NADH ⟶ NAD + (2H+) + (2e-)

NAD is the IUPAC symbol for nicotinamide adenine dinucleotide without implication of its oxidation state, whereas the oxidized form of NAD is NAD+ and the reduced form of NAD is NADH (in terms of total amount, NAD = NADH + NAD+).


7.1. NADH ⟶ NAD + 2H+ + 2e-

Kataoka 2020 Microbiology Monographs CORRECTION.png
xx Kataoka N, Matsutani M, Matsushita K (2020) Respiratory chain and energy metabolism of Corynebacterium glutamicum. In: Inui M, Toyoda K (eds) Corynebacterium glutamicum. Microbiology Monographs 23. Springer, Cham. - »Bioblast link«

S7.1

Shields 2021 Front Cell Dev Biol CORRECTION.png
xx Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front Cell Dev Biol 9:628157. - »Bioblast link«

S7.1

Wu 2022 Neuromolecular Med CORRECTION.png
xx Wu Z, Ho WS, Lu R (2022) Targeting mitochondrial oxidative phosphorylation in glioblastoma therapy. Neuromolecular Med 24:18-22. - »Bioblast link«

S7.1


7.2. NADH ⟶ NAD + 2e-

Yang 2022 Front Cell Dev Biol CORRECTION.png
xx Yang J, Guo Q, Feng X, Liu Y, Zhou Y (2022) Mitochondrial dysfunction in cardiovascular diseases: potential targets for treatment. Front Cell Dev Biol 10:841523. - »Bioblast link«

S7.2


7.3. NADH ⟶ NAD + e-

Chi 2022 Biomedicines CORRECTION.png
xx Chi SC, Cheng HC, Wang AG (2022) Leber hereditary optic neuropathy: molecular pathophysiology and updates on gene therapy. Biomedicines 10:1930. - »Bioblast link«

S7.3

Geng 2023 Front Physiol CORRECTION.png
xx Geng Y, Hu Y, Zhang F, Tuo Y, Ge R, Bai Z (2023) Mitochondria in hypoxic pulmonary hypertension, roles and the potential targets. Front Physiol 14:1239643. - »Bioblast link«

S7.3

Simon 2022 Function (Oxf) CORRECTION.png
xx Simon L, Molina PE (2022) Cellular bioenergetics: experimental evidence for alcohol-induced adaptations. Function (Oxf) 3:zqac039. - »Bioblast link«

S7.3


7.4. NADH ⟶ NAD

Beier 2015 FASEB J CORRECTION.png
xx Beier UH, Angelin A, Akimova T, Wang L, Liu Y, Xiao H, Koike MA, Hancock SA, Bhatti TR, Han R, Jiao J, Veasey SC, Sims CA, Baur JA, Wallace DC, Hancock WW (2015) Essential role of mitochondrial energy metabolism in Foxp3⁺ T-regulatory cell function and allograft survival. FASEB J 29:2315-26. - »Bioblast link«

S7.4

Howie 2014 Front Immunol CORRECTION.png
xx Howie D, Waldmann H, Cobbold S (2014) Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment. Front Immunol 5:409. - »Bioblast link«

S7.4

Murray 2009 Genome Med CORRECTION.png
xx Murray AJ (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Med 1:117. - »Bioblast link«

S7.4

Prasun 2020 J Diabetes Metab Disord CORRECTION.png
xx Prasun P (2020) Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord 19:2017-22. - »Bioblast link«

S7.4

Steiner 2017 Int J Biochem Cell Biol CORRECTION.png
xx Steiner JL, Lang CH (2017) Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 89:125-35. - »Bioblast link«

S7.4

Tirichen 2021 Front Physiol CORRECTION.png
xx Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y (2021) Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front Physiol 12:627837. - »Bioblast link«

S7.4


Supplement 8. NADH + H ⟶ NAD+ + 2e-

Vartak 2013 Protein Cell CORRECTION.png
xx Vartak R, Porras CA, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4:582-90. - »Bioblast link«
Fig. 1 of Vartak et al (2013): The misconstrued charge on FAD in FADH2 → FAD+ may explain the explicit one-electron (1e) transfer shown for the 2-electron transfer from FADH2.

S8


Supplement 9. NADH + H+ ⟶ NADH

Cadonic 2016 Mol Neurobiol CORRECTION.png
xx Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol 53:6078-90. - »Bioblast link«

S9


Supplement 10. NADH2 ⟶ NAD+

Papa 2007 Springer CORRECTION.png
xx Papa S, Petruzzella V, Scacco S (2007) Electron transport. Structure, redox-coupled protonmotive activity, and pathological disorders of respiratory chain Complexes. Springer, Boston, MA. In: Lajtha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology:93–118. - »Bioblast link«

S10


Supplement 11. NADH ⟶ for CI, but NAD+ ⟶ NADH + H+ for TCA cycle DH

Dimauro 2009 Biochim Biophys Acta CORRECTION.png
xx DiMauro S, Rustin P (2009) A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. Biochim Biophys Acta 1792:1159-67. - »Bioblast link«

S11


Supplement 12. Reverse

Grandoch 2019 Nat Metab CORRECTION.png
xx Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EBM, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M5, Haendeler J, Fischer JW (2019) 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 1:546-59. - »Bioblast link«
NADH is shown as the product of the reaction catalyzed by CI in respiration. This error is rare in the literature, but comparable to the error frequenty encountered when FADH2 is shown as the substrate of CII.

S12

Hunt 2018 PLoS Comput Biol CORRECTION.png
xx Hunt KA, Jennings RM, Inskeep WP, Carlson RP (2018) Multiscale analysis of autotroph-heterotroph interactions in a high-temperature microbial community. PLoS Comput Biol 14:e1006431. Nat Metab 1:546-59. - »Bioblast link«
NADH is shown as the product of the reaction catalyzed by CI in respiration.

S12

Zhao 2021 Mol Biomed CORRECTION.png
xx Zhao H, Li Y (2021) Cancer metabolism and intervention therapy. Mol Biomed 2:5. - »Bioblast link«

S12


Supplement 13. Cytochrome b6f Complex: NADP+ + H+ ⟶ NADPH

Baniulis 2008 Photochem Photobiol CORRECTION.png
xx Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008) Structure-function of the cytochrome b6f complex. Photochem Photobiol 84:1349-58. - »Bioblast link«

S13

Hasan 2012 Phys Chem Chem Phys CORRECTION.png
xx Hasan SS, Cramer WA (2012) On rate limitations of electron transfer in the photosynthetic cytochrome b6f complex. Phys Chem Chem Phys 14:13853-60. - »Bioblast link«

S13

Liguori 2020 Photosynth Res CORRECTION.png
xx Liguori N, Croce R, Marrink SJ, Thallmair S (2020) Molecular dynamics simulations in photosynthesis. Photosynth Res 144:273-95. - »Bioblast link«

S13


Supplement 14. Other

Michelet 2013 Front Plant Sci CORRECTION.png
xx Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD (2013) Redox regulation of the Calvin-Benson cycle: something old, something new. Front Plant Sci 4:470. - »Bioblast link«



Lauterbach 2013 FEBS J CORRECTION.png
xx Lauterbach L, Lenz O, Vincent KA (2013) H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases. FEBS J 280:3058-68. - »Bioblast link«



Li 2008 J Bacteriol CORRECTION.png
## Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843-50. - »Bioblast link«



Reeve 2015 ChemCatChem CORRECTION.png
## Reeve HA, Lauterbach L, Lenz O, Vincent KA (2015) Enzyme-modified particles for selective biocatalytic hydrogenation by hydrogen-driven NADH recycling. ChemCatChem 7:3480-7. - »Bioblast link«


Liang 2019 Front Microbiol CORRECTION.png
## Liang J, Huang H, Wang S (2019) Distribution, evolution, catalytic mechanism, and physiological functions of the flavin-based electron-bifurcating NADH-dependent reduced ferredoxin: NADP+ oxidoreductase. Front Microbiol 10:373. - »Bioblast link«


Subcategories

This category has the following 3 subcategories, out of 3 total.

Pages in category "Ambiguity crisis - NAD and H+"

The following 180 pages are in this category, out of 180 total.