Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Donnelly 2022 MitoFit Hypoxia

From Bioblast
Revision as of 00:25, 5 January 2022 by Gnaiger Erich (talk | contribs) (Created page with "{{Publication |title=MitoEAGLE Hypoxia Task Group (2022) The ABC of hypoxia – what is the norm?. MitoFit Preprints in prep. |authors=MitoEAGLE Hypoxia Task Group |year=2022...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Publications in the MiPMap
MitoEAGLE Hypoxia Task Group (2022) The ABC of hypoxia – what is the norm?. MitoFit Preprints in prep.


MitoEAGLE Hypoxia Task Group (2022) MitoFit Preprints

Abstract: The terminology on ‘oxia’ ― from normoxia to hypoxia and anoxia in contrast to hyperoxia ― has a long history (Richalet 2021). But ambiguities persist. These are discussed in the present communication with the aim to clarify concepts, bridge the gap between different points of view, and thus facilitate future research to resolve current controversies and discrepancies. The ABC of hypoxia spans the notion of (1) hyperoxic, normoxic, and hypoxic to anoxic conditions in the atmosphere and hydrosphere to the intracellular microenvironment, (2) physiological responses to oxygen availability in geological time and biological evolution, and (3) comparative and exercise physiology in health to hypoxia and oxygenation in disease (Lane 2002). Wherever continuous oxygen gradients and discontinuous differences between compartments exist, ambient normoxia is distinguished from normoxia in biological compartments partitioned into organs, tissues, cells, and intracellular microenvironments along the respiratory cascade (Weibel 2000). Normoxia is not a norm but a reference condition for critical functions, particularly for aerobic and anaerobic energy metabolism, and for oxygen sensing and hypoxic signaling in different organisms and tissues (Clanton et al 2013). Long-term evolutionary adaptation and short-term physiological, biochemical, and molecular acclimation and acclimatization re-set the functional normoxic reference points (Hochachka, Somero 2002).

The absolute normoxic reference point is based on a meaningful but arbitrary definition which unifies the ABC concepts of normoxia: (A) ambient normoxia at sea level in the contemporary atmosphere and at air saturation of aqueous environments, (B) biological compartmental O2 levels at ambient normoxia under physiological routine performance of healthy organisms in the absence of environmental stress (e.g. extreme temperatures), and (C) critical functions maintained relative to ambient normoxia and evaluated by measurement of the response to changed oxygen conditions and oxygen kinetics (Gnaiger et al 2000). Conversely, the ABC of hypoxia and hyperoxia is concerned with deviations from these reference points in conditions of (a) ambient changes of oxygen levels, (b) transient increases of biological O2 demand exceeding oxygen supply and pathological limitations of O2 transport, or (c) the critical oxygen pressure and oxygen kinetics shifted by pathological effects and environmental stress.

Bioblast editor: Gnaiger E


Labels: MiParea: Respiration, Comparative MiP;environmental MiP, Exercise physiology;nutrition;life style 

Stress:Oxidative stress;RONS, Hypoxia 



Regulation: Aerobic glycolysis, Flux control, Temperature  Coupling state: ROUTINE 


Tissue normoxia 

Living Communication

Last update 2022-01-04

Open list of contributors

  • Luiza Cardoso1, Cristiane Cecatto1, Chris Donnelly1,2, Erich Gnaiger1, Bengt Kayser2, Timea Komlódi1, Nicolas Place2, Sabine Schmitt1
1 Oroboros Instruments, Innsbruck, Austria
2 Institute of Sport Sciences, University of Lausanne, Switzerland



References and weblinks

LinkViewReferenceYear
PLOS ONE 13:e0204269. PMID: 30325922 Open AccessAl-Ani A, Toms D, Kondro D, Thundathil J, Yu Y, Ungrin M (2018) Oxygenation in cell culture: Critical parameters for reproducibility are routinely not reported. https://doi.org/10.1371/journal.pone.02042692018
BMJ 317:798-801. PMID: 9740573 Open AccessBateman NT, Leach RM (1998) ABC of oxygen. Acute oxygen therapy. https://doi.org/10.1136/bmj.317.7161.7981998
File:Baumgaertl 1983 POS.pdfBaumgaertl H, Luebbers DW (1983) Microcoaxial needle sensor for polarographic measurement of local O2 pressure in the cellular range of living tissue. Its construction and properties. In: Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Gnaiger E, Forstner H (eds), Springer, Berlin, Heidelberg, New York:37-65.1983
J Physiol 600:1229-51. PMID: 33566386 Open AccessBrooks GA, Arevalo JA, Osmond AD, Leija RG, Curl CC, Tovar AP (2022) Lactate in contemporary biology: a phoenix risen. https://doi.org/10.1113/JP2809552022
Antioxid Redox Signal PMID: 35102747 Open AccessBurtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M (2022) Adaptive responses to hypoxia and/or hyperoxia in humans. https://doi.org/10.1089/ars.2021.02802022
J Cell Mol Med 15:1239-53. PMID:21251211 Open AccessCarreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. https://doi.org/10.1111/j.1582-4934.2011.01258.x2011
J Fish Biol 88:1-9. Open AccessChabot D, McKenzie DJ, Craig JF (2016) Metabolic rate in fishes: definitions, methods and significance for conservation physiology. https://doi.org/10.1111/jfb.12873.2016
J Gen Physiol 49:163-88. PMID: 4285727 Open AccessChance B (1965) Reaction of oxygen with the respiratory chain in cells and tissues. https://doi.org/10.1085/jgp.49.1.1631965
Am J Physiol Cell Physiol 288:C730-8. PMID: 15537712 Open AccessChung Y, Molé PA, Sailasuta N, Tran TK, Hurd R, Jue T (2005) Control of respiration and bioenergetics during muscle contraction. https://doi.org/10.1152/ajpcell.00138.20042005
Compr Physiol 3:1135-90. PMID: 23897683Clanton TL, Hogan MC, Gladden LB (2013) Regulation of cellular gas exchange, oxygen sensing, and metabolic control. https://doi.org/10.1002/cphy.c1200302013
Cells 10:2161. PMID: 34440930 Open AccessDi Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, Berardinelli P, Dainese E, Cimini A, Barboni B (2021) Insight into hypoxia stemness control. https://doi.org/10.3390/cells100821612021
Respir Physiol 80:113-27. PMID: 2218094Di Prampero PE, Ferretti G (1990) Factors limiting maximal oxygen consumption in humans. https://doi.org/10.1016/0034-5687(90)90075-a1990
Toxicol In Vitro 74:105156. PMID: 33811995DiProspero TJ, Dalrymple E, Lockett MR (2021) Physiologically relevant oxygen tensions differentially regulate hepatotoxic responses in HepG2 cells. https://doi.org/10.1016/j.tiv.2021.1051562021
J Physiol 594:1741-51. PMID: 26614395 Open AccessGifford JR, Garten RS, Nelson AD, Trinity JD, Layec G, Witman MA, Weavil JC, Mangum T, Hart C, Etheredge C, Jessop J, Bledsoe A, Morgan DE, Wray DW, Richardson RS (2016) Symmorphosis and skeletal muscle VO2max: in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. https://doi.org/10.1113/JP2712292016
POS1983
Bioblast pdf Springer link
Gnaiger E (1983) In situ measurement of oxygen profiles in lakes: microstratifications, oscillations, and the limits of comparison with chemical methods. In: Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Gnaiger E, Forstner H (eds), Springer, Berlin, Heidelberg, New York:245-64.1983
Bioblast pdfGnaiger E (1991) Animal energetics at very low oxygen: Information from calorimetry and respirometry. In: Strategies for gas exchange and metabolism. Woakes R, Grieshaber M, Bridges CR (eds), Soc Exp Biol Seminar Series 44, Cambridge Univ Press, London:149-71.1991
Bioblast pdfGnaiger E (1993) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Surviving hypoxia: Mechanisms of control and adaptation. Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) CRC Press, Boca Raton, Ann Arbor, London, Tokyo:77-109.1993
Bioblast pdfGnaiger E (1993) Homeostatic and microxic regulation of respiration in transitions to anaerobic metabolism. In: The vertebrate gas transport cascade: Adaptations to environment and mode of life. Bicudo JEPW (ed), CRC Press, Boca Raton, Ann Arbor, London, Tokyo:358-70.1993
Bioblast pdf
Respir Physiol 128:277-97. PMID: 11718759
Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. https://doi.org/10.1016/S0034-5687(01)00307-32001
Bioblast pdf
Adv Exp Med Biol 543:39-55. PMID: 14713113
Gnaiger E (2003) Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology. https://doi.org/10.1007/978-1-4419-8997-0_42003
Open Access pdf published online 2020-12-30

Gnaiger E (2020) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg Commun 2020.2. https://doi.org/10.26124/bec:2020-00022020
Bioenerg Commun 2020.1. Open Access pdf published online 2020-05-20

Gnaiger E et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. https://doi.org/10.26124/bec:2020-0001.v12020
Open Access
J Exp Biol 201:1129-39. PMID: 9510525
Gnaiger E, Lassnig B, Kuznetsov AV, Rieger G, Margreiter R (1998) Mitochondrial oxygen affinity, respiratory flux control, and excess capacity of cytochrome c oxidase. https://doi.org/10.1242/jeb.201.8.11291998
PMID: 11005877 Open AccessGnaiger E, Méndez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci U S A 97:11080-5. https://doi.org/10.1073/pnas.97.20.110802000
N Engl J Med 360:140-9. PMID: 19129527 Open AccessGrocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE, Caudwell Xtreme Everest Research Group (2009) Arterial blood gases and oxygen content in climbers on Mount Everest. https://doi.org/10.1056/NEJMoa08015812009
Cell Physiol Biochem 9:150-72 PMID: 10494029 Open AccessGstraunthaler G, Seppi T, Pfaller W (1999) Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic? https://doi.org/10.1159/0000163121999
PMID: 26251509 Open AccessHarrison DK, Fasching M, Fontana-Ayoub M, Gnaiger E (2015) Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia. J Appl Physiol 119:1210-8. https://doi.org/10.1152/japplphysiol.00146.20152015
POS1983
Bioblast pdf Springer link
Hitchman ML, Gnaiger E (1983) A thermodynamic consideration of permeability coefficients of membranes. In: Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Gnaiger E, Forstner H (eds), Springer, Berlin, Heidelberg, New York:31-6.1983
Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds) (1993) Surviving hypoxia: mechanisms of control and adaptation. CRC Press, Boca Raton, Ann Arbor, London, Tokyo:570 pp.1993
Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford Univ Press, New York: 466 pp.2002
Lancet 383:166-75. PMID: 25552691 Open AccessIoannidis JPA, Greenland S, Hlatky MA, Khoury MJ, Macleod MR, Moher D, Schulz KF, Tibshirani R (2014) Increasing value and reducing waste in research design, conduct, and analysis. https://doi.org/10.1016/S0140-6736(13)62227-82014
Am J Physiol 271:1172-80. PMID:8897823 Open AccessJiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. https://doi.org/10.1152/ajpcell.1996.271.4.C11721996
Physiol Rev 99:161-234. PMID:30354965 Open AccessKeeley TP, Mann GE (2019) Defining physiological normoxia for improved translation of cell physiology to animal models and humans. https://doi.org/10.1152/physrev.00041.20172019
FASEB J 32:2531-8. PMID: 29273673 Open AccessKeeley TP, Siow RCM, Jacob R, Mann GE (2018) Reduced SERCA activity underlies dysregulation of Ca2+ homeostasis under atmospheric O2 levels. https://doi.org/10.1096/fj.201700685RRR2018
Nat Biomed Eng 5:787-92. PMID: 34389822 Open AccessKlein SG, Alsolami SM, Steckbauer A, Arossa S, Parry AJ, Ramos Mandujano G, Alsayegh K, Izpisua Belmonte JC, Li M, Duarte CM (2021) A prevalent neglect of environmental control in mammalian cell culture calls for best practices. https://doi.org/10.1038/s41551-021-00775-02021
Bioenerg Commun 2021.4. Open Access pdf published online 2021-12-21

Komlódi T, Sobotka O, Gnaiger E (2021) Facts and artefacts on the oxygen dependence of hydrogen peroxide production using Amplex UltraRed. Bioenerg Commun 2021.4. https://doi.org/10.26124/bec:2021-00042021
http://www.nick-lane.net/Lane N (2002) Oxygen: The molecule that made the world. Oxford Univ Press. 374 pp.2002
Acta Physiol (Oxf) 229:e13463. PMID: 32144872 Open AccessLarsen FJ, Schiffer TA, Zinner C, Willis SJ, Morales-Alamo D, Calbet J, Boushel R, Holmberg HC (2020) Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake. https://doi.org/10.1111/apha.134632020
BMJ 317:1370-3. PMID: 9812940 Open AccessLeach RM, Treacher DF (1998) ABC of oxygen. Oxygen transport-2. Tissue hypoxia. https://doi.org/10.1136/bmj.317.7169.13701998
Int J Mol Sci 22:11754. PMID: 34769182 Open AccessLindenmann J, Smolle C, Kamolz LP, Smolle-Juettner FM, Graier WF (2021) Survey of molecular mechanisms of hyperbaric oxygen in tissue repair. https://doi.org/10.3390/ijms2221117542021
Nature 399:271–5. PMID: 10353251Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. https://doi.org/10.1038/204591999
Br J Radiol 87:20130676. PMID:24588669 Open AccessMcKeown SR (2014) Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. https://doi.org/10.1259/bjr.201306762014
Miller GA (1991) The science of words. Scientific American Library New York:276 pp.1991
Nat Ecol Evol 6:520-32. PMID: 35449457Mills DB, Boyle RA, Daines SJ, Sperling EA, Pisani D, Donoghue PCJ, Lenton TM (2022) Eukaryogenesis and oxygen in Earth history. https://doi.org/10.1038/s41559-022-01733-y2022
Am J Physiol 277:R173-80. PMID: 10409271 Open AccessMolé PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T (1999) Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. https://doi.org/10.1152/ajpregu.1999.277.1.R1731999
J Fish Biol 88:10–25. Open AccessNelson JA (2016) Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements. https://doi.org/10.1111/jfb.128242016
Front Physiol 12:820815. Open AccessOkada Y, Paton JFR, López-Barneo J, Wilson RJA, Marina N, Pokorski M (2021) Editorial: Hypoxia and cardiorespiratory control. https://doi.org/10.3389/fphys.2021.8208152021
Ergebnisse Physiol exper Pharmakol 44:315–424.Opitz E (1941) Über akute Hypoxie. https://doi.org/10.1007/BF023226131941
Am J Blood Res 9:1-14. PMID: 30899601 Open AccessOrtiz-Prado E, Dunn JF, Vasconez J, Castillo D, Viscor G (2019) Partial pressure of oxygen in the human body: a general review. https://pubmed.ncbi.nlm.nih.gov/30899601/2019
BMJ317:1063-6. PMID: 9774298 Open AccessPeacock AJ (1998) ABC of oxygen: oxygen at high altitude. https://doi.org/10.1136/bmj.317.7165.10631998
Commun Biol 4:584. PMID: 33990696 Open AccessPezet MG, Gomez-Duran A, Klimm F, Aryaman J, Burr S, Wei W, Saitou M, Prudent J, Chinnery PF (2021) Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro. https://doi.org/10.1038/s42003-021-02069-22021
J Physiol 598:4473-507. PMID: 32918749 Open AccessPoole DC, Pittman RN, Musch TI, Østergaard L (2020) August Krogh's theory of muscle microvascular control and oxygen delivery: a paradigm shift based on new data. https://doi.org/10.1113/JP2792232020
J Physiol 599:737-67. PMID: 33112439 Open AccessPoole DC, Rossiter HB, Brooks GA, Gladden LB (2021) The anaerobic threshold: 50+ years of controversy. https://doi.org/10.1113/JP2799632021
Respir Care 58:1711-3. PMID: 24064630 Open AccessPruitt WC (2013) Long-term oxygen therapy: in a perfect world. https://doi.org/10.4187/respcare.028112013
Clin Med (Lond) 22:23-33. PMID: 34921056 Open AccessRatcliffe PJ (2022) Harveian Oration 2020: Elucidation of molecular oxygen sensing mechanisms in human cells: implications for medicine. https://doi.org/10.7861/clinmed.ed.22.1.harv2022
Proc Natl Acad Sci U S A 113:8933-8. PMID: 27457943 Open AccessReinhard CT, Planavsky NJ, Olson SL, Lyons TW, Erwin DH (2016) Earth's oxygen cycle and the evolution of animal life. https://doi.org/10.1073/pnas.15215441132016
J Appl Physiol (1985) 130:1573-82. PMID: 33703942Richalet JP (2021) The invention of hypoxia. https://doi.org/10.1152/japplphysiol.00936.20202021
Am J Physiol Regul Integr Comp Physiol 278:R1111-3. PMID: 10798883 Open AccessRichardson RS (2000) Intracellular PO2 and bioenergetic measurements in skeletal muscle: the role of exercise paradigm. https://doi.org/10.1152/ajpregu.2000.278.4.R11112000
J Physiol 571:415-24. PMID: 16396926 Open AccessRichardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier PG (2006) Human skeletal muscle intracellular oxygenation: the impact of ambient oxygen availability. https://doi.org/10.1113/jphysiol.2005.1023272006
J Appl Physiol (1985) 86:1048-53. PMID: 10066722 Open AccessRichardson RS, Grassi B, Gavin TP, Haseler LJ, Tagore K, Roca J, Wagner PD (1999) Evidence of O2 supply-dependent VO2max in the exercise-trained human quadriceps. https://doi.org/10.1152/jappl.1999.86.3.10481999
J Appl Physiol (1985) 87:325-31. PMID: 10409591 Open AccessRichardson RS, Leigh JS, Wagner PD, Noyszewski EA (1999) Cellular PO2 as a determinant of maximal mitochondrial O2 consumption in trained human skeletal muscle. https://doi.org/10.1152/jappl.1999.87.1.3251999
J Clin Invest 96:1916-26. PMID: 7560083 Open AccessRichardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. https://doi.org/10.1172/JCI1182371995
Am J Physiol 277:H1831-40. PMID: 10564137 Open AccessRichmond KN, Shonat RD, Lynch RM, Johnson PC (1999) Critical PO2 of skeletal muscle in vivo. https://doi.org/10.1152/ajpheart.1999.277.5.H18311999
Bioblast pdf
Adv Exp Med Biol 662:7-25. PMID: 20204766 Open Access
Scandurra FM, Gnaiger E (2010) Cell respiration under hypoxia: facts and artefacts in mitochondrial oxygen kinetics. https://doi.org/10.1007/978-1-4419-1241-1_22010
Mol Cell Biol 12:5447–54. PMID: 1448077 Open AccessSemenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. https://doi.org/10.1128/mcb.12.12.5447-5454.19921992
Amer Zool 28:161–81. Open AccessShick JM, Widdows J, Gnaiger E (1988) Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. https://doi.org/10.1093/icb/28.1.161.1988
Eur Respir J 36:1056-66. PMID: 20516051 Open AccessSommer N, Pak O, Schörner S, Derfuss T, Krug A, Gnaiger E, Ghofrani HA, Schermuly RT, Huckstorf C, Seeger W, Grimminger F, Weissmann N (2010) Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing. https://doi.org/10.1183/09031936.000138092010
Methods Cell Biol 155:273-93. PMID: 32183962Stepanova A, Galkin A (2020) Measurement of mitochondrial H2O2 production under varying O2 tensions. https://doi.org/10.1016/bs.mcb.2019.12.0082020
Weibel ER (2000) Symmorphosis: on form and function in shaping life. Harvard Univ Press:280 pp.2000
Hypoxia (Auckl) 3:35-43. PMID: 27774480 Open AccessWenger RH, Kurtcuoglu V, Scholz CC, Marti HH, Hoogewijs D (2015) Frequently asked questions in hypoxia research. https://doi.org/10.2147/HP.S921982015
BMJ 317:1213-6. PMID: 9794863 Open AccessWilliams AJ (1998) ABC of oxygen: assessing and interpreting arterial blood gases and acid-base balance. https://doi.org/10.1136/bmj.317.7167.12131998
BMJ 317:996-9. PMID: 9765173 Open AccessWilmshurst P (1998) ABC of oxygen. Diving and oxygen. https://doi.org/10.1136/bmj.317.7164.9961998
Weblinks

Notes